Exemplo n.º 1
0
def setup_solids():
    with app.context():
        aims_data, ds = app.get('solids')
    aims_data_atoms = aims_data['atoms'].assign(ene=lambda x: x.data.apply(
        lambda y: y['energy'][0]['value'][0]
        if y else None, 1)).groupby('symbol').apply(
            lambda x: x.iloc[x.reset_index()['ene'].idxmin()]['data'])
    aims_data['solids'].sort_index(inplace=True)
    for species, data in aims_data_atoms.items():
        n = len(aims_data['solids'].loc(0)[:, :, species])
        aims_data['solids'].loc[_I[:, :, species], 'data'] = n * [data]
    pts = pd.concat(
        dict(
            aims_data['solids'].gridfile.loc[:, [1.], ['crystal']]
            .apply(lambda x: pd.read_hdf(x))
        ),
        names='label scale fragment i_point'.split()
    )['i_atom part_weight rho rho_grad_norm kin_dens'.split()] \
        .set_index('i_atom', append=True) \
        .assign(kin_dens=lambda x: x.kin_dens/2)
    alpha_vvs = pd.concat(
        {
            C_vv: pts.pipe(calc_vvpol, mbd.omega_grid[0], C=C_vv).groupby(
                'label scale fragment i_atom'.split()).sum()
            for C_vv in [0.0093, 0.0101]
        },
        names=['C_vv'])
    return aims_data['solids'], pts, ds, alpha_vvs
Exemplo n.º 2
0
def setup_C6_set():
    coords = (pd.read_hdf(resource_filename(
        'mbdvv', 'data/C6-data.h5'), 'coords').reset_index().rename(
            {
                'system': 'label',
                'level_1': 'i_atom'
            }, axis=1).assign(i_atom=lambda x: x.i_atom + 1).set_index(
                'label i_atom'.split()))
    with app.context():
        aims_data = app.get('C6s')
    hirsh = {
        label: data['volumes'] /
        data['free_atoms']['volumes'][data['free_atoms']['species'] - 1]
        for (label, _, _), data, _ in aims_data.itertuples()
    }
    hirsh = pd.DataFrame([(label, i, val) for label, arr in hirsh.items()
                          for i, val in enumerate(arr)],
                         columns='label i_atom hirsh'.split()).set_index(
                             'label i_atom'.split()).hirsh
    ref = (pd.read_hdf(resource_filename('mbdvv', 'data/C6-data.h5'),
                       'C6_ref').set_index('system1 system2'.split()))
    pts = pd.concat(
        dict(
            aims_data['gridfile']
            .loc[:, 1., 'main']
            .apply(lambda x: pd.read_hdf(x))
        ),
        names=('label', 'i_point')
    )['i_atom part_weight rho rho_grad_norm kin_dens'.split()] \
        .set_index('i_atom', append=True)
    return coords, hirsh, ref, pts
Exemplo n.º 3
0
def setup_x23():
    with app.context():
        aims_data, ds, alpha_vvs = app.get('x23')
    alpha_vvs = pd.concat(
        {
            C: pd.read_hdf(alpha_vv['alpha.h5'].path)
            for C, alpha_vv in alpha_vvs.items()
        },
        names=['C_vv'])
    alpha_vvs.index = alpha_vvs.index.set_names('label', 1)
    return aims_data, ds, alpha_vvs
Exemplo n.º 4
0
def integrate_atomic_vv(dsname=None, C=None):
    from pymbd import MBDCalc
    import pandas as pd
    from mbdvv.app import app
    from mbdvv.functasks import evaluate_vv_batch
    from multiprocessing import Pool

    with app.context():
        df = app.get(dsname)[0]
    with MBDCalc(4) as mbd_calc:
        freq = mbd_calc.omega_grid[0]

    args_list = [(key, x, freq, C) for key, x in df.gridfile.groupby('label')]
    with Pool() as pool:
        pd.concat(dict(pool.starmap(evaluate_vv_batch,
                                    args_list))).to_hdf('alpha.h5', 'alpha')
Exemplo n.º 5
0
def setup_layered():
    with app.context():
        return app.get('layered')
Exemplo n.º 6
0
def setup_surface():
    with app.context():
        return app.get('surface')