Exemplo n.º 1
0
    def solve_all(self, f1, trace):
        """ Returns an upperset in UR. You want to project
            it to R1 to use as the output. """
        dp0 = self.dp1
        R = dp0.get_res_space()
        R1 = R[0]
        UR = UpperSets(R)

        # we consider a set of iterates
        # we start from the bottom
        trace.log('Iterating in UR = %s' % UR.__str__())

        s0 = R.Us(R.get_minimal_elements())
        S = [
            KleeneIteration(s=s0,
                            s_converged=R.Us(set()),
                            r=upperset_project(s0, 0),
                            r_converged=R1.Us(set()))
        ]

        for i in range(1, 1000000):  # XXX
            with trace.iteration(i) as t:
                si_prev = S[-1].s
                si_next, converged = solve_f_iterate(dp0, f1, R, si_prev, t)
                iteration = KleeneIteration(s=si_next,
                                            s_converged=converged,
                                            r=upperset_project(si_next, 0),
                                            r_converged=upperset_project(
                                                converged, 0))
                S.append(iteration)

                t.log('R = %s' % UR.format(si_next))

                if do_extra_checks():
                    try:
                        UR.check_leq(si_prev, si_next)
                    except NotLeq as e:
                        msg = 'Loop iteration invariant not satisfied.'
                        raise_wrapped(Exception,
                                      e,
                                      msg,
                                      si_prev=si_prev,
                                      si_next=si_next,
                                      dp=self.dp1)

                t.values(state=S[-1])

                if UR.leq(si_next, si_prev):
                    t.log('Breaking because converged (iteration %s) ' % i)
                    #t.log(' solution is %s' % (UR.format(sip)))
                    # todo: add reason why interrupted
                    break

        trace.values(type='loop2', UR=UR, R=R, dp=self, iterations=S)

        res_all = S[-1].s
        res_r1 = upperset_project(res_all, 0)
        result = dict(res_all=res_all, res_r1=res_r1)

        return result
Exemplo n.º 2
0
def solve_stats(ndp):
    res = {}
    query = {
        "endurance": "1.5 hour",
        "velocity": "1 m/s",
        "extra_power": " 1 W",
        "extra_payload": "100 g",
        "num_missions": "100 []",
    }
    context = Context()
    f = convert_string_query(ndp=ndp, query=query, context=context)

    dp0 = ndp.get_dp()
    dpL, dpU = get_dp_bounds(dp0, nl=1, nu=1)

    F = dp0.get_fun_space()
    F.belongs(f)

    from mcdp import logger
    traceL = Tracer(logger=logger)
    resL = dpL.solve_trace(f, traceL)
    traceU = Tracer(logger=logger)
    resU = dpU.solve_trace(f, traceU)
    R = dp0.get_res_space()
    UR = UpperSets(R)
    print('resultsL: %s' % UR.format(resL))
    print('resultsU: %s' % UR.format(resU))

    res['traceL'] = traceL
    res['traceU'] = traceU
    res['resL'] = resL
    res['resU'] = resU
    res['nsteps'] = 100

    return res
Exemplo n.º 3
0
def solve_meat_solve_ftor(trace, ndp, dp, fg, intervals, max_steps, exp_advanced):
    R = dp.get_res_space()
    UR = UpperSets(R)

#     if intervals:
#         res = solver_iterative(dp, fg, trace)
#     else:
    if True:
#         if not _exp_advanced:
            res = dp.solve_trace(fg, trace)
            rnames = ndp.get_rnames()
            x = ", ".join(rnames)
            # todo: add better formatting
            if res.minimals:
                trace.log('Minimal resources needed: %s = %s' % (x, UR.format(res)))
            else:
                trace.log('This problem is unfeasible.')
#         else:
#             try:
#                 trace = generic_solve(dp, f=fg, max_steps=max_steps)
#                 trace.log('Iteration result: %s' % trace.result)
#                 ss = trace.get_s_sequence()
#                 S = trace.S
#                 trace.log('Fixed-point iteration converged to: %s'
#                       % S.format(ss[-1]))
#                 R = trace.dp.get_res_space()
#                 UR = UpperSets(R)
#                 sr = trace.get_r_sequence()
#                 rnames = ndp.get_rnames()
#                 x = ", ".join(rnames)
#                 trace.log('Minimal resources needed: %s = %s'
#                       % (x, UR.format(sr[-1])))
#             except:
#                 raise
    return res, trace
Exemplo n.º 4
0
def solve_meat_solve(trace, ndp, dp, fg, intervals, max_steps, exp_advanced):
    R = dp.get_res_space()
    UR = UpperSets(R)

    #     if intervals:
    #         res = solver_iterative(dp, fg, trace)
    #     else:
    if True:
        #         if not _exp_advanced:
        res = dp.solve_trace(fg, trace)
        rnames = ndp.get_rnames()
        x = ", ".join(rnames)
        # todo: add better formatting
        trace.log("Minimal resources needed: %s = %s" % (x, UR.format(res)))
    #         else:
    #             try:
    #                 trace = generic_solve(dp, f=fg, max_steps=max_steps)
    #                 trace.log('Iteration result: %s' % trace.result)
    #                 ss = trace.get_s_sequence()
    #                 S = trace.S
    #                 trace.log('Fixed-point iteration converged to: %s'
    #                       % S.format(ss[-1]))
    #                 R = trace.dp.get_res_space()
    #                 UR = UpperSets(R)
    #                 sr = trace.get_r_sequence()
    #                 rnames = ndp.get_rnames()
    #                 x = ", ".join(rnames)
    #                 trace.log('Minimal resources needed: %s = %s'
    #                       % (x, UR.format(sr[-1])))
    #             except:
    #                 raise
    return res, trace
Exemplo n.º 5
0
    def process(self, request, string, nl, nu):
        l = self.get_library(request)
        parsed = l.parse_constant(string)

        space = parsed.unit
        value = parsed.value

        model_name = self.get_model_name(request)
        library = self.get_current_library_name(request)
        ndp, dp = self._get_ndp_dp(library, model_name)

        F = dp.get_fun_space()
        UR = UpperSets(dp.get_res_space())

        tu = get_types_universe()
        tu.check_leq(parsed.unit, F)

        f = express_value_in_isomorphic_space(parsed.unit, parsed.value, F)

        print('query: %s ...' % F.format(f))

        from mocdp import logger
        tracer = Tracer(logger=logger)

        dpl, dpu = get_dp_bounds(dp, nl, nu)

        intervals = False
        max_steps = 10000
        result_l, _trace = solve_meat_solve(tracer, ndp, dpl, f,
                                         intervals, max_steps, False)

        result_u, trace = solve_meat_solve(tracer, ndp, dpu, f,
                                         intervals, max_steps, False)


        key = (string, nl, nu)

        res = dict(result_l=result_l, result_u=result_u, dpl=dpl, dpu=dpu)
        self.solutions[key] = res

        res = {}

        e = cgi.escape

        res['output_space'] = e(space.__repr__() + '\n' + str(type(space)))
        res['output_raw'] = e(value.__repr__() + '\n' + str(type(value)))
        res['output_formatted'] = e(space.format(value))

        res['output_result'] = 'Lower: %s\nUpper: %s' % (UR.format(result_l),
                                                         UR.format(result_u))
        res['output_trace'] = str(trace)

        encoded = "nl=%s&nu=%s&string=%s" % (nl, nu, string)
        res['output_image'] = 'display.png?' + encoded
        res['ok'] = True

        return res
Exemplo n.º 6
0
def check_lang_singlespace3():
    ndp1 = parse_ndp("""
    mcdp {
        provides power [ S(electric_power) x W ] 
    
        requires heat  [ S(heat) x W ]
    
        efficiency = 0.9 []
        
        r_heat = take(required heat, 1)
        f_power = take(provided power, 1)
        
        
        r_heat >= f_power / efficiency 
    }
    
    """)

    ndp2 = parse_ndp("""
    mcdp {
        provides power [ S(electric_power) x W ] 
    
        requires heat  [ S(heat) x W ]
    
        efficiency = 0.9 []
        
        f_power = take(provided power, 1)
        
        
        heat >= <S(heat):*, f_power / efficiency> 
    }
    
    """)
    dp1 = ndp1.get_dp()
    dp2 = ndp2.get_dp()
    R = dp1.get_res_space()
    print type(R), R
    UR = UpperSets(R)
    res1 = dp1.solve(('electric_power', 10.0))
    res2 = dp2.solve(('electric_power', 10.0))
    print UR.format(res1)
    print UR.format(res2)
Exemplo n.º 7
0
def check_lang_singlespace3():
    ndp1 = parse_ndp("""
    mcdp {
        provides power [ S(electric_power) x W ] 
    
        requires heat  [ S(heat) x W ]
    
        efficiency = 0.9 []
        
        r_heat = take(required heat, 1)
        f_power = take(provided power, 1)
        
        
        r_heat >= f_power / efficiency 
    }
    
    """)

    ndp2 = parse_ndp("""
    mcdp {
        provides power [ S(electric_power) x W ] 
    
        requires heat  [ S(heat) x W ]
    
        efficiency = 0.9 []
        
        f_power = take(provided power, 1)
        
        
        heat >= <S(heat):*, f_power / efficiency> 
    }
    
    """)
    dp1 = ndp1.get_dp()
    dp2 = ndp2.get_dp()
    R = dp1.get_res_space()
    print type(R), R
    UR = UpperSets(R)
    res1 = dp1.solve(('electric_power', 10.0))
    res2 = dp2.solve(('electric_power', 10.0))
    print UR.format(res1)
    print UR.format(res2)
Exemplo n.º 8
0
def check_coproducts1():
    parse_wrap_check('choose(a:a, b:b)', Syntax.ndpt_dp_rvalue)


    s = """
        mcdp {
            provides energy [J]
            requires budget [$]
            
            a = mcdp {
                provides energy [J]
                requires budget [$]
                budget >= 5 $
                energy <= 10 J
            }
            
            b = mcdp {
                provides energy [J]
                requires budget [$]
                budget >= 5 $
                energy <= 50 J
            }
            
            c = instance choose(optionA:a, optionB:b)
            energy <= c.energy
            budget >= c.budget
        }    
    """
    ndp = parse_ndp(s)
    dp = ndp.get_dp()
    R = dp.get_res_space()
    I = dp.get_imp_space()
    print('R: %s' % R)
    print('I: %s' % I)
    UR = UpperSets(R)
    res = dp.solve(0.0)
    print UR.format(res)

    imps = dp.get_implementations_f_r(f=0.0, r=R.get_top())
    print imps
Exemplo n.º 9
0
    def solve_all(self, f1, trace):
        """ Returns an upperset in UR. You want to project
            it to R1 to use as the output. """
        dp0 = self.dp1
        R = dp0.get_res_space()
        R1 = R[0]
        UR = UpperSets(R)

        # we consider a set of iterates
        # we start from the bottom
        trace.log('Iterating in UR = %s' % UR.__str__())
        
        s0 = R.Us(R.get_minimal_elements()) 
        S = [KleeneIteration(s=s0, s_converged=R.Us(set()),
                                r=upperset_project(s0, 0),
                                r_converged=R1.Us(set()))]
            
        for i in range(1, 1000000):  # XXX
            with trace.iteration(i) as t:
                si_prev = S[-1].s
                si_next, converged = solve_f_iterate(dp0, f1, R, si_prev, t)
                iteration = KleeneIteration(s=si_next, 
                                            s_converged=converged,
                                            r=upperset_project(si_next, 0),
                                            r_converged=upperset_project(converged, 0))
                S.append(iteration)
                
                t.log('R = %s' % UR.format(si_next))

                if do_extra_checks():
                    try:
                        UR.check_leq(si_prev, si_next)
                    except NotLeq as e:
                        msg = 'Loop iteration invariant not satisfied.'
                        raise_wrapped(Exception, e, msg, si_prev=si_prev, 
                                      si_next=si_next, dp=self.dp1)
                
                t.values(state=S[-1])

                if UR.leq(si_next, si_prev):
                    t.log('Breaking because converged (iteration %s) ' % i)
                    #t.log(' solution is %s' % (UR.format(sip)))
                    # todo: add reason why interrupted
                    break

        trace.values(type='loop2', UR=UR, R=R, dp=self, iterations=S)
        
        res_all = S[-1].s
        res_r1 = upperset_project(res_all, 0)
        result = dict(res_all=res_all, res_r1=res_r1)
        
        return result
Exemplo n.º 10
0
def check_coproducts1():
    parse_wrap_check('choose(a:a, b:b)', Syntax.ndpt_dp_rvalue)

    s = """
        mcdp {
            provides energy [J]
            requires budget [$]
            
            a = mcdp {
                provides energy [J]
                requires budget [$]
                budget >= 5 $
                energy <= 10 J
            }
            
            b = mcdp {
                provides energy [J]
                requires budget [$]
                budget >= 5 $
                energy <= 50 J
            }
            
            c = instance choose(optionA:a, optionB:b)
            energy <= c.energy
            budget >= c.budget
        }    
    """
    ndp = parse_ndp(s)
    dp = ndp.get_dp()
    R = dp.get_res_space()
    I = dp.get_imp_space()
    print('R: %s' % R)
    print('I: %s' % I)
    UR = UpperSets(R)
    res = dp.solve(0.0)
    print UR.format(res)

    imps = dp.get_implementations_f_r(f=0.0, r=R.get_top())
    print imps
Exemplo n.º 11
0
def test_conversion(id_ndp, ndp):
    if '_inf' in id_ndp:
        # plusinvnat3b_inf
        print(
            'Assuming that the suffix "_inf" in %r means that this will not converge'
            % (id_ndp))
        print('Skipping this test')
        return

    try:
        ndp.check_fully_connected()
    except NotConnected:
        print('Skipping test_conversion because %r not connected.' % id_ndp)
        return

    dp = ndp.get_dp()

    F = dp.get_fun_space()
    R = dp.get_res_space()

    fs = F.get_minimal_elements()

    max_elements = 5
    if len(fs) >= max_elements:
        fs = list(fs)[:max_elements]

    UR = UpperSets(R)
    for f in fs:
        try:
            res = dp.solve(f)
            print('%s -> %s' % (F.format(f), UR.format(res)))

            for r in res.minimals:
                imps = dp.get_implementations_f_r(f, r)
                print(imps)

        except NotSolvableNeedsApprox:
            break
Exemplo n.º 12
0
def test_conversion(id_ndp, ndp):
    if '_inf' in id_ndp:
        # plusinvnat3b_inf
        print('Assuming that the suffix "_inf" in %r means that this will not converge'
              % (id_ndp))
        print('Skipping this test')
        return

    try:
        ndp.check_fully_connected()
    except NotConnected:
        print('Skipping test_conversion because %r not connected.' % id_ndp)
        return

    dp = ndp.get_dp()

    F = dp.get_fun_space()
    R = dp.get_res_space()
    
    fs = F.get_minimal_elements()

    max_elements = 5
    if len(fs) >= max_elements:
        fs = list(fs)[:max_elements]

    UR = UpperSets(R)
    for f in fs:
        try:
            res = dp.solve(f)
            print('%s -> %s' % (F.format(f), UR.format(res)))

            for r in res.minimals:
                imps = dp.get_implementations_f_r(f, r)
                print(imps)

        except NotSolvableNeedsApprox:
            break
Exemplo n.º 13
0
def check_power8():  # TODO: move to ther files

    ndp = parse_ndp("""
    mcdp {
      requires a [dimensionless]
      requires b [dimensionless]
      
      provides c [dimensionless]
      
      a + b >= c
    }
    """)
    dp = ndp.get_dp()
    print(dp.repr_long())
    nl = 5
    nu = 5
    dpL, dpU = get_dp_bounds(dp, nl, nu)

    print(dpL.repr_long())
    print(dpU.repr_long())
    f = 10.0
    UR = UpperSets(dp.get_res_space())
    Rl = dpL.solve(f)
    Ru = dpU.solve(f)
    assert_equal(len(Rl.minimals), nl)
    assert_equal(len(Ru.minimals), nu)
    print('Rl: %s' % UR.format(Rl))
    print('Ru: %s' % UR.format(Ru))
    UR.check_leq(Rl, Ru)
    
    import numpy as np
    for x in np.linspace(0, f, 100):
        y = f - x
        p = (x, y)

        Rl.belongs(p)
Exemplo n.º 14
0
def solve_stats(ndp, n, algo):

    res = {}
    query = {
        "travel_distance": " 2 km",
        "carry_payload": "100 g",
        "num_missions": "100 []",
    }
    context = Context()
    f = convert_string_query(ndp=ndp, query=query, context=context)

    dp0 = ndp.get_dp()
    dpL, dpU = get_dp_bounds(dp0, nl=n, nu=n)

    F = dp0.get_fun_space()
    F.belongs(f)

    logger = None
    InvMult2.ALGO = algo
    traceL = Tracer(logger=logger)
    resL = dpL.solve_trace(f, traceL)
    traceU = Tracer(logger=logger)
    resU = dpU.solve_trace(f, traceU)
    R = dp0.get_res_space()
    UR = UpperSets(R)
    print('resultsL: %s' % UR.format(resL))
    print('resultsU: %s' % UR.format(resU))

    res['traceL'] = traceL
    res['traceU'] = traceU
    res['resL'] = resL
    res['resU'] = resU
    res['n'] = n
    res['query'] = query

    return res
Exemplo n.º 15
0
def solve_stats(ndp):
    res = {} 
    query = {
        "endurance": "1.5 hour",
        "velocity":  "1 m/s",
        "extra_power": " 1 W",
        "extra_payload": "100 g",
        "num_missions": "100 []",
    }
    context = Context()
    f = convert_string_query(ndp=ndp, query=query, context=context)
    
    dp0 = ndp.get_dp()
    dpL, dpU = get_dp_bounds(dp0, nl=1, nu=1)


    F = dp0.get_fun_space()
    F.belongs(f)

    from mocdp import logger
    traceL = Tracer(logger=logger)
    resL = dpL.solve_trace(f, traceL)
    traceU = Tracer(logger=logger)
    resU = dpU.solve_trace(f, traceU)
    R = dp0.get_res_space()
    UR = UpperSets(R)
    print('resultsL: %s' % UR.format(resL))
    print('resultsU: %s' % UR.format(resU))
    
    res['traceL'] = traceL
    res['traceU'] = traceU
    res['resL'] = resL
    res['resU'] = resU
    res['nsteps'] = 100

    return res
Exemplo n.º 16
0
def dual01_chain(id_dp, dp):
    try:
        with primitive_dp_test(id_dp, dp):
            print('Starting testing with %r' % id_dp)
            # get a chain of resources
            F = dp.get_fun_space()
            R = dp.get_res_space()
            
            # try to solve
            try: 
                dp.solve(F.witness())
                dp.solve_r(R.witness())
            except NotSolvableNeedsApprox:
                print('NotSolvableNeedsApprox - doing  lower bound ')
                n = 5
                dpL, dpU = get_dp_bounds(dp, nl=n, nu=n)
                dual01_chain(id_dp+'_L%s'%n, dpL)
                dual01_chain(id_dp+'_U%s'%n, dpU)
                return
            
            LF = LowerSets(F)
            UR = UpperSets(R)
        
            rchain = R.get_test_chain(n=8)
            poset_check_chain(R, rchain)
        
            try:
                lfchain = list(map(dp.solve_r, rchain))
                for lf in lfchain:
                    LF.belongs(lf)
            except NotSolvableNeedsApprox as e:
                print('skipping because %s'  % e)
                return
        
            try:
                poset_check_chain(LF, list(reversed(lfchain)))
                
            except ValueError as e:
                msg = 'The results of solve_r() are not a chain.'
                raise_wrapped(Exception, e, msg, chain=rchain, lfchain=lfchain)
        
            # now, for each functionality f, 
            # we know that the corresponding resource should be feasible
            
            for lf, r in zip(lfchain, rchain):
                print('')
                print('r: %s' % R.format(r))
                print('lf = h*(r) = %s' % LF.format(lf))
                
                for f in lf.maximals:
                    print('  f = %s' % F.format(f))
                    f_ur = dp.solve(f)
                    print('  f_ur = h(f) =  %s' % UR.format(f_ur))
                     
                    try:
                        f_ur.belongs(r)
                    except NotBelongs as e:
                        
                        try:
                            Rcomp.tolerate_numerical_errors = True
                            f_ur.belongs(r)
                            logger.info('In this case, there was a numerical error')
                            logger.info('Rcomp.tolerate_numerical_errors = True solved the problem')                    
                        except:
                            msg = ''
                            raise_wrapped(AssertionError, e, msg,
                                          lf=lf, r=r, f_ur=f_ur,
                                          r_repr=r.__repr__(),
                                          f_ur_minimals=f_ur.minimals.__repr__())
    finally:
        Rcomp.tolerate_numerical_errors = False
Exemplo n.º 17
0
Arquivo: loading.py Projeto: rusi/mcdp
def friendly_solve(ndp, query, result_like='dict(str:str)', upper=None, lower=None):
    """
        query = dict(power=(100,"W"))
        result_like = dict(power="W")
        
        s = solve
    
    """
    #print('friendly_solve(upper=%s, lower=%s)' % (upper, lower))
    # TODO: replace with convert_string_query(ndp, query, context):
    fnames = ndp.get_fnames()
    rnames = ndp.get_rnames()

    if not len(rnames) >= 1:
        raise NotImplementedError()
    
    value = []

    for fname in fnames:
        if not fname in query:
            msg = 'Missing function'
            raise_desc(ValueError, msg, fname=fname, query=query, fnames=fnames)

        F = ndp.get_ftype(fname)
        q, qs = query[fname]
        s = '%s %s' % (q, qs)

        try:
            val = interpret_params_1string(s, F=F)
        except NotLeq as e:
            raise_wrapped(ValueError, e, 'wrong type', fname=fname)
            
        value.append(val)

    if len(fnames) == 1:
        value = value[0]
    else:
        value = tuple(value)

    if hasattr(ndp, '_cache_dp0'):
        dp0 = ndp._cache_dp0
    else:
        
        dp0 = ndp.get_dp()
        ndp._cache_dp0 = dp0
        
    if upper is not None:
        _, dp = get_dp_bounds(dp0, nl=1, nu=upper)

    elif lower is not None:
        dp, _ = get_dp_bounds(dp0, nl=lower, nu=1)
    else:
        dp = dp0
        
    F = dp.get_fun_space()
    F.belongs(value)

    from mcdp import logger
    trace = Tracer(logger=logger)
    res = dp.solve_trace(value, trace)
    R = dp.get_res_space()
    UR = UpperSets(R)
    print('value: %s' % F.format(value))
    print('results: %s' % UR.format(res))

    ares = []
    implementations = []

    for r in res.minimals:
        rnames = ndp.get_rnames()
        fr = dict()
        for rname, sunit in result_like.items():
            if not rname in rnames:
                msg = 'Could not find resource %r.' % rname
                raise_desc(ValueError, msg, rnames=rnames)
            i = rnames.index(rname)
            unit = interpret_string_as_space(sunit)
            Ri = ndp.get_rtype(rname)
            if len(rnames) > 1:
                ri = r[i]
            else:
                assert i == 0
                ri = r
            v = express_value_in_isomorphic_space(S1=Ri, s1=ri, S2=unit)
            fr[rname] = v
        
        ares.append(fr)
        
        ms = dp.get_implementations_f_r(value, r)
        implementations.append(ms)
        
    return ares, implementations
Exemplo n.º 18
0
def dual01_chain(id_dp, dp):
    try:
        with primitive_dp_test(id_dp, dp):
            print('Starting testing with %r' % id_dp)
            # get a chain of resources
            F = dp.get_fun_space()
            R = dp.get_res_space()
            
            # try to solve
            try: 
                dp.solve(F.witness())
                dp.solve_r(R.witness())
            except NotSolvableNeedsApprox:
                print('NotSolvableNeedsApprox - doing  lower bound ')
                n = 5
                dpL, dpU = get_dp_bounds(dp, nl=n, nu=n)
                dual01_chain(id_dp+'_L%s'%n, dpL)
                dual01_chain(id_dp+'_U%s'%n, dpU)
                return
            
            LF = LowerSets(F)
            UR = UpperSets(R)
        
            rchain = R.get_test_chain(n=8)
            poset_check_chain(R, rchain)
        
            try:
                lfchain = list(map(dp.solve_r, rchain))
                for lf in lfchain:
                    LF.belongs(lf)
            except NotSolvableNeedsApprox as e:
                print('skipping because %s'  % e)
                return
        
            try:
                poset_check_chain(LF, list(reversed(lfchain)))
                
            except ValueError as e:
                msg = 'The results of solve_r() are not a chain.'
                raise_wrapped(Exception, e, msg, chain=rchain, lfchain=lfchain)
        
            # now, for each functionality f, 
            # we know that the corresponding resource should be feasible
            
            for lf, r in zip(lfchain, rchain):
                print('')
                print('r: %s' % R.format(r))
                print('lf = h*(r) = %s' % LF.format(lf))
                
                for f in lf.maximals:
                    print('  f = %s' % F.format(f))
                    f_ur = dp.solve(f)
                    print('  f_ur = h(f) =  %s' % UR.format(f_ur))
                     
                    try:
                        f_ur.belongs(r)
                    except NotBelongs as e:
                        
                        try:
                            Rcomp.tolerate_numerical_errors = True
                            f_ur.belongs(r)
                            logger.info('In this case, there was a numerical error')
                            logger.info('Rcomp.tolerate_numerical_errors = True solved the problem')                    
                        except:
                            msg = ''
                            raise_wrapped(AssertionError, e, msg,
                                          lf=lf, r=r, f_ur=f_ur,
                                          r_repr=r.__repr__(),
                                          f_ur_minimals=f_ur.minimals.__repr__())
    finally:
        Rcomp.tolerate_numerical_errors = False
Exemplo n.º 19
0
    def process_ftor(self, e, string, do_approximations, nl, nu):
        mcdp_library = library_from_env(e)
        parsed = mcdp_library.parse_constant(string)

        space = parsed.unit
        value = parsed.value

        ndp, dp = self.get_ndp_dp_e(e)

        F = dp.get_fun_space()
        UR = UpperSets(dp.get_res_space())

        try:
            f = parsed.cast_value(F)
        except NotLeq:
            msg = 'Space %s cannot be converted to %s' % (parsed.unit, F)
            raise DPSemanticError(msg)

        logger.info('query rtof: %s ...' % F.format(f))

        tracer = Tracer(logger=logger)

        intervals = False
        max_steps = 10000
        res = {}

        if do_approximations:

            dpl, dpu = get_dp_bounds(dp, nl, nu)

            result_l, _trace = solve_meat_solve_ftor(tracer, ndp, dpl, f,
                                                     intervals, max_steps,
                                                     False)

            result_u, trace = solve_meat_solve_ftor(tracer, ndp, dpu, f,
                                                    intervals, max_steps,
                                                    False)

            data = dict(result_l=result_l, result_u=result_u, dpl=dpl, dpu=dpu)

            res['output_result'] = 'Lower: %s\nUpper: %s' % (
                UR.format(result_l), UR.format(result_u))

        else:
            try:
                result, trace = solve_meat_solve_ftor(tracer, ndp, dp, f,
                                                      intervals, max_steps,
                                                      False)
            except NotSolvableNeedsApprox:
                msg = 'The design problem has infinite antichains. Please use approximations.'
                raise NeedsApprox(msg)
            data = dict(result=result, dp=dp)

            res['output_result'] = UR.format(result)

        e = cgi.escape
        res['output_space'] = e(space.__repr__() + '\n' + str(type(space)))
        res['output_raw'] = e(value.__repr__() + '\n' + str(type(value)))
        res['output_formatted'] = e(space.format(value))
        res['output_trace'] = str(trace)
        return data, res
Exemplo n.º 20
0
def friendly_solve(ndp, query, result_like='dict(str:str)', upper=None, lower=None):
    """
        query = dict(power=(100,"W"))
        result_like = dict(power="W")
        
        s = solve
    
    """
    #print('friendly_solve(upper=%s, lower=%s)' % (upper, lower))
    # TODO: replace with convert_string_query(ndp, query, context):
    fnames = ndp.get_fnames()
    rnames = ndp.get_rnames()

    if not len(rnames) >= 1:
        raise NotImplementedError()
    
    value = []

    for fname in fnames:
        if not fname in query:
            msg = 'Missing function'
            raise_desc(ValueError, msg, fname=fname, query=query, fnames=fnames)

        F = ndp.get_ftype(fname)
        q, qs = query[fname]
        s = '%s %s' % (q, qs)

        try:
            val = interpret_params_1string(s, F=F)
        except NotLeq as e:
            raise_wrapped(ValueError, e, 'wrong type', fname=fname)
            
        value.append(val)

    if len(fnames) == 1:
        value = value[0]
    else:
        value = tuple(value)

    if hasattr(ndp, '_cache_dp0'):
        dp0 = ndp._cache_dp0
    else:
        
        dp0 = ndp.get_dp()
        ndp._cache_dp0 = dp0
        
    if upper is not None:
        _, dp = get_dp_bounds(dp0, nl=1, nu=upper)

    elif lower is not None:
        dp, _ = get_dp_bounds(dp0, nl=lower, nu=1)
    else:
        dp = dp0
        
    F = dp.get_fun_space()
    F.belongs(value)

    from mocdp import logger
    trace = Tracer(logger=logger)
    res = dp.solve_trace(value, trace)
    R = dp.get_res_space()
    UR = UpperSets(R)
    print('value: %s' % F.format(value))
    print('results: %s' % UR.format(res))

    ares = []
    implementations = []

    for r in res.minimals:
        rnames = ndp.get_rnames()
        fr = dict()
        for rname, sunit in result_like.items():
            if not rname in rnames:
                msg = 'Could not find resource %r.' % rname
                raise_desc(ValueError, msg, rnames=rnames)
            i = rnames.index(rname)
            unit = interpret_string_as_space(sunit)
            Ri = ndp.get_rtype(rname)
            if len(rnames) > 1:
                ri = r[i]
            else:
                assert i == 0
                ri = r
            v = express_value_in_isomorphic_space(S1=Ri, s1=ri, S2=unit)
            fr[rname] = v
        
        ares.append(fr)
        
        ms = dp.get_implementations_f_r(value, r)
        implementations.append(ms)
        
    return ares, implementations