maxlen=100 # Sequence longer then this get ignored batch_size=16 # The batch size during training. valid_batch_size=64 # The batch size used for validation/test set. dataset='imdb' noise_std=0. use_dropout=True # if False slightly faster but worst test error # This frequently need a bigger model. reload_model=None # Path to a saved model we want to start from. test_size=-1 # If >0 we keep only this number of test example. model_options = locals().copy() # print "model options", model_options X, Y, X_test, Y_test = mdn_lstm.load_data() params = mdn_lstm.init_params(model_options) tparams = mdn_lstm.init_tparams(params) (use_noise, x, mask, y, f_pred_prob, f_pred, cost) = mdn_lstm.build_model(tparams, model_options) f_cost = theano.function([x, mask, y], cost, name='f_cost') grads = tensor.grad(cost, wrt=tparams.values()) f_grad = theano.function([x, mask, y], grads, name='f_grad') lr = tensor.scalar(name='lr') f_grad_shared, f_update = optimizer(lr, tparams, grads, x, mask, y, cost)
# Parameter for extra option noise_std=0. use_dropout=True # if False slightly faster, but worst test error # This frequently need a bigger model. reload_model=None # Path to a saved model we want to start from. test_size=-1 # If >0, we keep only this number of test example. # Model options model_options = locals().copy() # print( "model options", model_options) load_data, prepare_data = imdb.load_data, imdb.prepare_data # print( 'Loading data') X, Y, X_test, Y_test = mdn_lstm.load_data(predict=dim_proj) n_components = 3 model_options['n_components'] = n_components print( 'Building model') # This create the initial parameters as numpy ndarrays. # Dict name (string) -> numpy ndarray # params = init_params(model_options) # unfoled into a thing params = OrderedDict() # embedding randn = numpy.random.rand(model_options['n_words'],