def test_shape_of_output_of_6d_rnn(self):
        units = 7
        last_dim_size = 12
        rnn = MDRNN(units=units, input_shape=(None, None, None, None, None, None, last_dim_size),
                    return_sequences=True,
                    activation='tanh')

        x = tf.zeros(shape=(2, 3, 1, 2, 2, 1, 5, last_dim_size))

        result = rnn.call(x)
        self.assertEqual((2, 3, 1, 2, 2, 1, 5, units), result.shape)
    def test_shape(self):
        rnn2d = MDRNN(units=5, input_shape=(None, None, 1),
                      kernel_initializer=initializers.Constant(1),
                      recurrent_initializer=initializers.Constant(1),
                      bias_initializer=initializers.Constant(-1),
                      return_sequences=True,
                      activation='tanh')

        x = np.arange(6).reshape((1, 2, 3, 1))

        res = rnn2d.call(x)

        self.assertEqual((1, 2, 3, 5), res.shape)
    def test_for_two_step_sequence(self):
        kernel_initializer = initializers.Zeros()
        recurrent_initializer = kernel_initializer

        mdrnn = MDRNN(units=2,
                      input_shape=(None, 1),
                      kernel_initializer=kernel_initializer,
                      recurrent_initializer=recurrent_initializer,
                      bias_initializer=initializers.Constant(5),
                      return_sequences=True)
        x = np.zeros((1, 3, 1))
        a = mdrnn.call(x)

        expected_result = np.ones((1, 3, 2)) * 0.9999
        np.testing.assert_almost_equal(expected_result, a.numpy(), 4)
    def test_result(self):
        rnn2d = MDRNN(units=1, input_shape=(None, None, 1),
                      kernel_initializer=initializers.Identity(),
                      recurrent_initializer=initializers.Identity(1),
                      bias_initializer=initializers.Constant(-1),
                      return_sequences=True,
                      activation=None)

        x = np.arange(6).reshape((1, 2, 3, 1))

        actual = rnn2d.call(x)

        desired = np.array([
            [-1, -1, 0],
            [1, 3, 7]
        ]).reshape((1, 2, 3, 1))

        np.testing.assert_almost_equal(desired, actual.numpy(), 6)
    def test_2drnn_output_when_providing_initial_state(self):
        rnn2d = MDRNN(units=1, input_shape=(None, None, 1),
                      kernel_initializer=initializers.Identity(),
                      recurrent_initializer=initializers.Identity(1),
                      bias_initializer=initializers.Constant(-1),
                      return_sequences=True,
                      activation=None)

        x = np.arange(6).reshape((1, 2, 3, 1))

        initial_state = [tf.ones(shape=(1, 1)), tf.ones(shape=(1, 1))]

        actual = rnn2d.call(x, initial_state=initial_state)
        desired = np.array([
            [1, 1, 2],
            [3, 7, 13]
        ]).reshape((1, 2, 3, 1))
        np.testing.assert_almost_equal(desired, actual.numpy(), 6)
Exemplo n.º 6
0
    def test_result_after_running_rnn_on_3d_input(self):
        rnn3d = MDRNN(units=1,
                      input_shape=(None, None, None, 1),
                      kernel_initializer=initializers.Identity(),
                      recurrent_initializer=initializers.Identity(1),
                      bias_initializer=initializers.Constant(1),
                      return_sequences=True,
                      return_state=True,
                      activation=None)

        x = np.arange(2 * 2 * 2).reshape((1, 2, 2, 2, 1))

        outputs, state = rnn3d.call(x)

        desired = np.array([[[1, 3], [4, 11]], [[6, 15], [17, 51]]]).reshape(
            (1, 2, 2, 2, 1))

        np.testing.assert_almost_equal(desired, outputs.numpy(), 6)

        desired_state = desired[:, -1, -1, -1]
        np.testing.assert_almost_equal(desired_state, state.numpy(), 6)
    def test_1d_rnn_produces_correct_output_for_2_steps(self):
        kernel_initializer = initializers.identity()
        recurrent_initializer = kernel_initializer

        bias = 3
        bias_initializer = initializers.Constant(bias)

        mdrnn = MDRNN(units=3,
                      input_shape=(None, 3),
                      kernel_initializer=kernel_initializer,
                      recurrent_initializer=recurrent_initializer,
                      bias_initializer=bias_initializer,
                      activation=None,
                      return_sequences=True)

        x1 = np.array([1, 2, 4])
        x2 = np.array([9, 8, 6])
        x = np.array([x1, x2])
        a = mdrnn.call(x.reshape((1, 2, -1)))

        expected_result = np.array([[x1 + bias, x1 + x2 + 2 * bias]])
        np.testing.assert_almost_equal(expected_result, a.numpy(), 8)
 def test_feeding_layer_created_with_default_initializer(self):
     mdrnn = MDRNN(units=2, input_shape=(None, 1))
     x = np.zeros((1, 1, 1)) * 0.5
     mdrnn.call(x)