Exemplo n.º 1
0
def metropolis_pb(ks,q,verbose=False,mu_offset=0,iterations=50000):
    """Metropolis-Hastings sampling for ks, given product-bernoulli proposal function"""
    G = len(ks)
    eps = [-log(k) for k in ks]
    f = lambda mu:sum(fd(ep,mu) for ep in eps) - q
    mu = bisect_interval(f,-50,50) + mu_offset
    def weight(ss):
        return (falling_fac(q,sum(ss))*product(k**s for k,s in zip(ks,ss)))
    def proposal(ss):
        #state = [int(random.random() < p) for _ in range(len(ss))]
        state = rstate(eps,mu)
        #print "proposed state with occ:",sum(state)
        return state
    def dprop(ss):
        prop = dstate(ss,eps,mu)
        #print "prop:",prop 
        return prop        
    x0 = proposal([0] * len(ks))
    return mh(weight,proposal,x0,dprop=dprop,verbose=verbose,iterations=iterations)
Exemplo n.º 2
0
def metropolis_uniform(ks,q,verbose=False,mu_offset=0,iterations=50000):
    """Metropolis-Hastings sampling for ks, given uniform proposal function"""
    G = len(ks)
    eps = [-log(k) for k in ks]
    f = lambda mu:sum(fd(ep,mu) for ep in eps) - q
    mu = bisect_interval(f,-50,50) + mu_offset
    def weight(ss):
        return (falling_fac(q,sum(ss))*product(k**s for k,s in zip(ks,ss)))
    def proposal(ss):
        on_chr_prob = sum(ss)/float(q)
        on_chr = random.random() < on_chr_prob
        ss_new = ss[:]
        if on_chr:
            pos = random.choice([i for (i,s) in enumerate(ss) if s])
            ss_new[pos] = 0
        new_pos = random.choice([-1] + [i for (i,s) in enumerate(ss) if not s])
        if new_pos >= 0:
            ss_new[new_pos] = 1
        return ss_new
    x0 = proposal([0] * len(ks))
    return mh(weight,proposal,x0,verbose=verbose,iterations=iterations)