Exemplo n.º 1
0
def SimpleDecoupling_swp_mw_amp(name,tau=None,N=None, mw_amps=np.arange(0.6,0.8,0.01),reps_per_ROsequence=1000, mbi = True):

    m = DD.SimpleDecoupling(name+'_tau_'+str(tau*1e9))


    funcs.prepare(m)
    #input parameters
    m.params['reps_per_ROsequence'] = reps_per_ROsequence

    pts = len(mw_amps)

    tau_list = tau*np.ones(pts)
    N_list = N*np.ones(pts)
        
    #inital and final pulse
    m.params['Initial_Pulse'] ='y'
    m.params['Final_Pulse'] ='-y' 
    #Method to construct the sequence
    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt' # repeating_T_elt
    
    m.params['pts'] = pts
    m.params['tau_list'] = tau_list
    m.params['Number_of_pulses'] = N_list
    m.params['sweep_pts'] = mw_amps
    m.params['do_general_sweep'] = 1
    m.params['general_sweep_name'] = 'Hermite_pi_length'
    m.params['general_sweep_pts'] = mw_amps
    m.params['sweep_name'] = 'Hermite_pi_length'
    m.autoconfig()


    m.params['DD_in_eigenstate'] = False

    funcs.finish(m, upload =True, debug=False)
def Crosstalk_vs2(name, C_measured = 5, C_gate = 1, RO_phase=0, RO_Z=False, C13_init_method = 'MBI', 
					N_list = np.arange(4,300,24), phase_array = np.linspace(-60, 400,19),   debug = False,el_RO= 'positive',el_state = 0, nr_of_gates = 1):
    m = DD.Nuclear_Crosstalk_vs2(name)
    funcs.prepare(m)

    '''set experimental parameters'''
    
    m.params['carbon_nr'] 			= C_measured    ### Carbon spin that the Ramsey is performed on
    m.params['Carbon_B'] 			= C_gate        ### Carbon spin that the Rabi/Gate is performed on
    
    m.params['reps_per_ROsequence'] = 300 
    m.params['init_state']      	= 'up' 
    m.params['nr_of_gates']          = nr_of_gates
   
    m.params['pts'] 				= len(phase_array)
    m.params['C_RO_phase'] 			= phase_array

    m.params['sweep_name'] 			= 'phase'
    m.params['sweep_pts']  			= m.params['C_RO_phase']

    '''Derived and fixed parameters'''

    m.params['electron_readout_orientation'] = el_RO

    m.params['Nr_C13_init']       = 1
    m.params['Nr_MBE']            = 0
    m.params['Nr_parity_msmts']   = 0
   
    funcs.finish(m, upload =True, debug=debug)
Exemplo n.º 3
0
def NuclearRamseyWithInitialization_cal(name,
                                        carbon_nr=1,
                                        carbon_init_state='up',
                                        el_RO='positive',
                                        detuning=0.5e3,
                                        evo_time=400e-6,
                                        el_state=1,
                                        debug=False,
                                        free_evolution_time=400e-6 +
                                        np.linspace(0., 6.0e-3, 44)):

    m = DD.NuclearRamseyWithInitialization(name)
    funcs.prepare(m)
    '''Set parameters'''

    ### Sweep parameters
    m.params['reps_per_ROsequence'] = 250
    m.params['C13_MBI_RO_state'] = 0
    ### overwritten from msmnt params

    ####################################
    ### Option 1; Sweep waiting time ###
    ####################################

    ## '''1A - Rotating frame with detuning'''
    m.params['add_wait_gate'] = True
    m.params['pts'] = len(free_evolution_time)
    m.params['free_evolution_time'] = free_evolution_time

    # m.params['free_evolution_time'] = 180e-6 + np.linspace(0e-6, 4*1./74e3,m.params['pts'])

    m.params['C' + str(carbon_nr) + '_freq_0'] += detuning
    m.params['C' + str(carbon_nr) + '_freq_1' +
             m.params['electron_transition']] += detuning
    m.params['C_RO_phase'] = np.ones(m.params['pts']) * 0

    m.params['sweep_name'] = 'free_evolution_time'
    m.params['sweep_pts'] = m.params['free_evolution_time']

    ############################################
    ### Option 2; Sweep RO phase at set time ###
    ############################################
    # m.params['pts'] = 21
    # m.params['add_wait_gate'] = False
    # m.params['free_evolution_time'] = np.ones(m.params['pts'] )*evo_time
    # m.params['C_RO_phase'] = np.linspace(-20, 400,m.params['pts'])

    # m.params['sweep_name'] = 'phase'
    # m.params['sweep_pts']  = m.params['C_RO_phase']
    '''Derived and fixed parameters'''

    m.params['electron_readout_orientation'] = el_RO
    m.params['carbon_nr'] = carbon_nr
    m.params['init_state'] = carbon_init_state
    m.params['electron_after_init'] = str(el_state)
    m.params['Nr_C13_init'] = 1
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    funcs.finish(m, upload=True, debug=debug)
Exemplo n.º 4
0
def Carbon_Ramsey(name,tau = None,N=None, carbon = 7, evolution_times = []):

    m = DD.NuclearRamsey(name)

    funcs.prepare(m)

    '''set experimental parameters'''
    m.params['reps_per_ROsequence'] =   500 #Repetitions of each data point
    m.params['Initial_Pulse']       =   'x'
    m.params['Final_Pulse']         =   '-x'
    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt'

    m.params['addressed_carbon'] = carbon 

    ### Sweep parmater
    m.params['free_evolution_times']    = evolution_times

    m.params['pts']                     = len(m.params['free_evolution_times'])
    m.params['sweep_pts']               = m.params['free_evolution_times']
    m.params['sweep_name']              = 'Free evolution time'

    print 'free evolution times: %s' %m.params['free_evolution_times']
    
    if N ==None: 
        m.params['C_Ren_N'+m.params['electron_transition']] = m.params['C'+str(m.params['addressed_carbon'])+'_Ren_N'+m.params['electron_transition']][0]  
    else:
        m.params['C_Ren_N'+m.params['electron_transition']] = N
    if tau ==None: 
        m.params['C_Ren_tau'+m.params['electron_transition']] = m.params['C'+str(m.params['addressed_carbon'])+'_Ren_tau'+m.params['electron_transition']][0]
    else: 
        m.params['C_Ren_tau'+m.params['electron_transition']] = tau 

    m.autoconfig()
    funcs.finish(m, upload =True, debug=False)
    print m.params['sweep_pts'] 
def Long_Carbon_Ramsey(name, tau=None, Addressed_Carbon=7):

    m = DD.LongNuclearRamsey(name)
    funcs.prepare(m)
    '''set experimental parameters'''
    m.params['reps_per_ROsequence'] = 500  #Repetitions of each data point
    m.params['Ren_Decoupling_scheme'] = 'repeating_T_elt'
    m.params['DD_wait_scheme'] = 'auto'  #XY8'

    ### Sweep parameters

    m.params['N_list'] = range(
        4, 320, 24)  # np.ones(len(m.params['Phases_of_Ren_B']))*4 #
    m.params['Phases_of_Ren_B'] = np.ones(len(m.params['N_list'])) * 0

    # m.params['N_list'] = np.ones(21)*4#
    # m.params['Phases_of_Ren_B'] = np.linspace(0,360*2,21)

    m.params['C' + str(Addressed_Carbon) + '_freq'] = (
        m.params['C' + str(Addressed_Carbon) + '_freq'] + 0.1e3
    )  # Overwrites the msmst params. Usefull to calibrate and find the correct freq

    tau_larmor = m.get_tau_larmor()
    m.params['tau_list'] = np.ones(len(m.params['N_list'])) * tau_larmor * 16
    m.params['Addressed_Carbon'] = Addressed_Carbon

    m.params['pts'] = len(m.params['Phases_of_Ren_B'])
    m.params['sweep_pts'] = np.ones(
        len(m.params['N_list']
            ))  #NB! This value is overwritten in the measurement class
    # when the sweep name is 'Free Evolution Time (s)'
    m.params['sweep_name'] = 'Free Evolution time (s)'

    m.autoconfig()
    funcs.finish(m, upload=True, debug=False)
def NuclearRamseyWithInitialization_phase(name,
                                          carbon_nr=1,
                                          carbon_init_state='up',
                                          el_RO='positive',
                                          el_state=0,
                                          debug=False,
                                          nr_of_pts=24):

    m = DD.NuclearRamseyWithInitialization_v2(name)
    funcs.prepare(m)
    '''Set parameters'''

    ### Sweep parameters
    m.params['reps_per_ROsequence'] = 500
    m.params['C13_MBI_RO_state'] = el_state

    m.params['pts'] = nr_of_pts
    m.params['add_wait_gate'] = False
    # m.params['free_evolution_time'] = np.ones(m.params['pts'] )*360e-6
    m.params['C_RO_phase'] = np.linspace(-60, 400, m.params['pts'])

    m.params['sweep_name'] = 'phase'
    m.params['sweep_pts'] = m.params['C_RO_phase']
    '''Derived and fixed parameters'''

    m.params['electron_readout_orientation'] = el_RO
    m.params['carbon_nr'] = carbon_nr
    m.params['init_state'] = carbon_init_state
    # m.params['electron_after_init'] = str(el_state)

    m.params['Nr_C13_init'] = 1
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    funcs.finish(m, upload=True, debug=debug)
def SimpleDecoupling(name, N, step_size, start_point, tot,start_tau = 0.52e-6):

    m = DD.SimpleDecoupling(name)

    for kk in range(tot):
        
        ### Set experimental parameters ###
        m.params['reps_per_ROsequence'] = 500 
        m.params['Initial_Pulse'] ='x'
        m.params['Final_Pulse'] ='-x'
        m.params['Decoupling_sequence_scheme'] = 'single_block'

        Number_of_pulses = N 
        pts = 41
        start    = start_tau + (kk+start_point)     * (pts-1)*step_size 
        end      = start_tau + (kk+1+start_point)   * (pts-1)*step_size
        tau_list = np.linspace(start, end, pts)

        ### Start measurement ###

            ### Measurement name
        msmt_name = 'measurement' + str(kk)
        
            ### Optimize position
        '''qt.msleep(2)
        if mod(kk,2)==0:
            AWG.clear_visa()
            stools.turn_off_all_lt2_lasers()
            qt.msleep(1)
            GreenAOM.set_power(5e-6)
            optimiz0r.optimize(dims=['x','y','z','x','y'])'''

            ### Define and print parameters
        funcs.prepare(m)
        m.params['pts']              = len(tau_list)
        m.params['Number_of_pulses'] = Number_of_pulses*np.ones(m.params['pts']).astype(int)
        m.params['tau_list']         = tau_list
        m.params['sweep_pts']        = tau_list*1e6
        m.params['sweep_name']       = 'tau (us)'

        print 'run = ' + str(kk) + ' of ' + str(tot)
        print m.params['sweep_pts']
        print tau_list

            ### Run experiment            
        m.autoconfig()
        m.params['E_RO_durations'] = [m.params['SSRO_duration']]
        m.params['E_RO_amplitudes'] = [m.params['Ex_RO_amplitude']]
        m.generate_sequence(upload=True, debug=False)
        m.run(setup=True, autoconfig=False)
        m.save(msmt_name)

            ### Option to stop the measurement cleanly
        print 'press q now to cleanly exit measurement loop'
        qt.msleep(5)
        if (msvcrt.kbhit() and (msvcrt.getch() == 'q')):
            break
    
        ### Close the fileexperiment in ot out the loop, that is the question, what happens if this is just in?
    m.finish()
Exemplo n.º 8
0
def SimpleDecoupling_swp_tau(name,
                             tau_min=9e-6,
                             tau_max=10e-6,
                             tau_step=50e-9,
                             N=16):

    m = DD.SimpleDecoupling(name)
    funcs.prepare(m)
    '''set experimental parameters'''
    m.params['reps_per_ROsequence'] = 500  #Repetitions of each data point
    m.params['Initial_Pulse'] = 'x'
    if N % 4 == 0:
        m.params['Final_Pulse'] = '-x'
    else:
        m.params['Final_Pulse'] = 'x'
    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt'

    Number_of_pulses = N
    tau_list = np.arange(tau_min, tau_max, tau_step)
    print tau_list

    m.params['pts'] = len(tau_list)
    m.params['Number_of_pulses'] = Number_of_pulses * np.ones(
        m.params['pts']).astype(int)
    m.params['tau_list'] = tau_list
    m.params['sweep_pts'] = tau_list * 1e6
    m.params['sweep_name'] = 'tau (us)'

    m.autoconfig()
    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 9
0
def spin_echo(name):

    m = DD.SimpleDecoupling(name)
    funcs.prepare(m)
    #############
    # Parameters for spin-echo
    #############
    pts = 21
    tau_start = 100e-6  #!!! Measurement class has minimal tau of 4us
    tau_final = 200e-6
    m.params['reps_per_ROsequence'] = 2500  #Repetitions of each data point

    ########
    # parameters specific for spin -echo
    ###########
    Number_of_pulses = 1
    m.params['Initial_Pulse'] = 'x'
    m.params['Final_Pulse'] = 'x'
    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt'
    #####
    #Calculate/set remaining paramters
    tau_list = np.linspace(
        tau_start / 2.0, tau_final / 2.0, pts
    )  #The way tau is defined is different in hahn spin-echo and decoupling experiments
    m.params['pts'] = pts
    m.params['Number_of_pulses'] = Number_of_pulses * np.ones(pts).astype(int)
    m.params['tau_list'] = tau_list
    m.params['sweep_pts'] = 2 * Number_of_pulses * tau_list * 1e6
    m.params['sweep_name'] = '2*N*tau (us)'
    m.autoconfig()

    funcs.finish(m, upload=True, debug=True)
Exemplo n.º 10
0
def NuclearRamseyWithInitialization(name,
                                    state='up',
                                    tau=None,
                                    RO_phase=0,
                                    RO_Z=False,
                                    N=None,
                                    method='swap'):

    m = DD.NuclearRamseyWithInitialization(name)
    funcs.prepare(m)
    '''set experimental parameters'''

    ### Initialize:
    m.params['Addressed_Carbon'] = 3
    m.params['C_init_method'] = 'MBI'  #'MBI'->X, 'swap'-> 0
    m.params['C13_MBI_threshold'] = 1
    m.params['C13_init_state'] = state  # 'up' or 'down'
    m.params['electron_init_state'] = '0'  # '0' or '1'

    ### Sweep parameters
    detuning_ms0 = None
    detuning_ms1 = None
    m.params['reps_per_ROsequence'] = 500
    m.params['pts'] = 25

    ## sweeping the readout phase
    m.params['C_RO_phase'] = RO_phase + np.linspace(0, 720, m.params['pts'])
    m.params['C_RO_Z'] = RO_Z
    m.params['wait_times'] = (
        np.ones(m.params['pts']) * 100e-6 + 30e-6
    )  #Note: wait time must be atleast carbon init time +5us
    m.params['sweep_pts'] = m.params[
        'C_RO_phase'] - RO_phase  #This needs to substracted for the data analysis.
    m.params['sweep_name'] = 'C_RO_phase'

    # ### sweeping the waittime
    # m.params['wait_times']  = np.linspace(130e-6, 130e-6 + 4e-3,m.params['pts']) #Note: wait time must be atleast carbon init time +5us
    # m.params['C_RO_phase']  = np.ones(m.params['pts'])*RO_phase
    # m.params['C_RO_Z']      = RO_Z
    # m.params['sweep_pts']   = m.params['wait_times']
    # m.params['sweep_name']  = 'evolution time'

    ##
    if detuning_ms0 != None:
        m.params['C3_freq_0'] = m.params['C3_freq_0'] - detuning_ms0
    if detuning_ms1 != None:
        m.params['C3_freq_1' + m.params['electron_transition']] = m.params[
            'C3_freq_1' + m.params['electron_transition']] - detuning_ms1

    #### Overwrite certain params for quick tests ###
    m.params['C13_MBI_RO_duration'] = 20
    m.params['E_C13_MBI_amplitude'] = 3e-9
    if N != None:
        m.params['C1_Ren_N'] = [N, 10]

    m.params['SP_duration_after_C13'] = 50
    m.params['A_SP_amplitude_after_C13_MBI'] = 15e-9
    m.params['E_SP_amplitude_after_C13_MBI'] = 0e-9

    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 11
0
def Echo_gate(name, C13_init_method='swap', carbon_nr=5, C13_init_state='up'):

    m = DD.EchoGate(name)
    funcs.prepare(m)
    '''set experimental parameters'''

    m.params['Carbon_nr'] = carbon_nr

    m.params['reps_per_ROsequence'] = 100
    m.params['C13_init_state'] = C13_init_state
    m.params['C13_init_method'] = C13_init_method
    m.params['sweep_name'] = 'waiting time (us)'
    m.params['e_ro_orientation'] = 'positive'

    m.params[
        'E_superposition'] = True  ### This boolean inserts an initial and final pi/2 pulse on the electronic state.

    #     ### Sweep parameters
    m.params['waiting_times'] = np.arange(10e-6, 400e-6, 10e-6)
    m.params['do_carbon_pi'] = True
    m.params['No_of_pulses'] = np.arange(8, 101, 8)
    #m.params['waiting_times'] = np.arange(10e-6,400e-6,10e-6)
    m.params['pts'] = len(m.params['waiting_times'])

    m.params['sweep_pts'] = [x * 2 * 10**6 for x in m.params['waiting_times']
                             ]  ## rescale to microseconds

    m.params['Nr_C13_init'] = 1
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 12
0
def SimpleDecoupling_swp_N(name,
                           tau=None,
                           Number_of_pulses=np.arange(80, 100, 2),
                           Final_Pulse='x',
                           Initial_Pulse='x',
                           reps_per_ROsequence=1000):

    m = DD.SimpleDecoupling(name)
    funcs.prepare(m)

    #input parameters
    m.params['reps_per_ROsequence'] = reps_per_ROsequence
    pts = len(Number_of_pulses)

    if tau == None:
        tau = m.params['C3_Ren_tau' + m.params['electron_transition']][0]
    tau_list = tau * np.ones(pts)
    print 'tau_list =' + str(tau_list)

    #inital and final pulse
    m.params['Initial_Pulse'] = Initial_Pulse
    m.params['Final_Pulse'] = Final_Pulse
    #Method to construct the sequence
    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt'

    m.params['pts'] = pts
    m.params['tau_list'] = tau_list
    m.params['Number_of_pulses'] = Number_of_pulses
    m.params['sweep_pts'] = Number_of_pulses
    print m.params['sweep_pts']
    m.params['sweep_name'] = 'Number of pulses'

    m.autoconfig()
    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 13
0
def Geometricgate(name, C13_init_method='swap',carbon_nr = 5,C13_init_state='up'):

    m = DD.GeometricGate(name)
    funcs.prepare(m)

    '''set experimental parameters'''
    
    m.params['Carbon_nr'] = carbon_nr    
    
    m.params['reps_per_ROsequence'] = 200
    m.params['C13_init_state']      = C13_init_state
    m.params['sweep_name']          = 'Number of pulses'
    m.params['e_ro_orientation']    = 'positive'
    m.params['C13_init_method']     = C13_init_method
    m.params['calibrate_pulses']= True
    m.params['no_unconditional_rotation'] = False

    f0=m.params['C'+str(carbon_nr)+'_freq_0']
    f1=m.params['C'+str(carbon_nr)+'_freq_1']
    HalfWaittime=(1/np.abs(f1-f0))/4.

#     ### Sweep parameters
    # m.params['waiting_times']=np.linspace(HalfWaittime-10e-6,HalfWaittime+10e-6,11)
    m.params['Number_of_pulses_uncond'] = np.arange(4,60,4)
    m.params['waiting_times'] = [HalfWaittime]*len(m.params['Number_of_pulses_uncond'])
    m.params['pts'] = len(m.params['Number_of_pulses_uncond']) 

    m.params['sweep_pts'] =m.params['Number_of_pulses_uncond'] 

    m.params['Nr_C13_init']     = 1
    m.params['Nr_MBE']          = 0
    m.params['Nr_parity_msmts'] = 0
    
    funcs.finish(m, upload =True, debug=False)
Exemplo n.º 14
0
def nspinflips(name):
    m = NSpinflips(name)
    funcs.prepare(m)

    SP_power = 200e-9
    m.params['AWG_SP_amplitude'] = qt.instruments[
        'NewfocusAOM'].power_to_voltage(SP_power, controller='sec')
    m.params['AWG_SP_duration'] = 5e-6

    pts = 11
    step_size = 150
    m.params['pts'] = pts
    m.params['AWG_sequence_repetitions'] = np.arange(pts) * step_size
    m.params['reps_per_ROsequence'] = 1500

    # for testing
    m.params['pi2pi_mIm1_mod_frq'] = 250e6
    m.params['pi2pi_mIm1_amp'] = 0.0  #0.05
    m.params['pi2pi_mIm1_duration'] = 1e-6

    # for the autoanalysis
    m.params['sweep_name'] = 'SP cycles'
    m.params['sweep_pts'] = m.params['AWG_sequence_repetitions']

    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 15
0
def SweepGates(name,**kw):

	debug = kw.pop('debug',False)
	carbon = kw.pop('carbon',False)
	el_RO = kw.pop('el_RO','positive')


	m = DD.Sweep_Carbon_Gate(name)
	funcs.prepare(m)

	m.params['C13_MBI_threshold_list'] = [1]
	m.params['el_after_init'] = '0'

	''' set experimental parameters '''

	m.params['reps_per_ROsequence'] = 1500

	### Carbons to be used
	m.params['carbon_list']         =[carbon]

	### Carbon Initialization settings
	m.params['carbon_init_list']    = [carbon]
	m.params['init_method_list']    = ['MBI']    
	m.params['init_state_list']     = ['up']
	m.params['Nr_C13_init']         = 1


	##################################
	### RO bases,timing and number of pulses (sweep parameters) ###
	##################################

	#print m.params['electron_transition']
	com_list,m.params['N_list'],m.params['tau_list'],m.params['Tomography Bases'] = put_sweep_together(m.params['C'+str(carbon)+'_gate_optimize_N_list'+m.params['C'+str(carbon)+'_dec_trans']],m.params['C'+str(carbon)+'_gate_optimize_tau_list'+m.params['C'+str(carbon)+'_dec_trans']])
 
	####################
	### MBE settings ###
	####################
	m.params['electron_transition_used']=m.params['C'+str(carbon)+'_dec_trans']
	m.params['Nr_MBE']              = 0 
	m.params['MBE_bases']           = []
	m.params['MBE_threshold']       = 1
	
	###################################
	### Parity measurement settings ###
	###################################

	m.params['Nr_parity_msmts']     = 0
	m.params['Parity_threshold']    = 1

	print com_list
	### Derive other parameters
	m.params['pts']                 = len(com_list)
	m.params['sweep_name']          = 'Tomo N and tau' 
	m.params['sweep_pts']           = com_list
	
	### RO params
	m.params['electron_readout_orientation'] = el_RO
	
	funcs.finish(m, upload =True, debug=debug)
Exemplo n.º 16
0
def NuclearT1_repumping(name,
                        tau=None,
                        carbon_state='up',
                        electron_RO='positive',
                        carbon=1,
                        el_RO_result=0,
                        el_after_init=0,
                        pts=2,
                        short_time=1.0e-3,
                        long_time=20.0e-3):

    m = DD.NuclearT1_repumping(name)
    funcs.prepare(m)
    '''set experimental parameters'''

    ### Sweep parameters
    m.params['reps_per_ROsequence'] = 500  #Repetitions of each data point
    m.params['pts'] = 2

    m.params['Addressed_Carbon'] = carbon
    m.params['C13_init_state'] = carbon_state
    m.params['electron_readout_orientation'] = electron_RO
    m.params['C13_MBI_RO_state'] = el_RO_result
    m.params[
        'el_after_init'] = el_after_init  #if ==1 then a micrwave pi pulse prings the electorn into ms=-1

    m.params['sweep_name'] = 'wait_times'
    m.params['wait_times'] = np.linspace(
        short_time, long_time, m.params['pts']
    )  #Note: wait time must be at least carbon init time +5us
    m.params['sweep_pts'] = m.params['wait_times']

    m.params['Nr_C13_init'] = 1

    ### MBE settings
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    ############################
    #    repumping parameters  #
    ############################

    m.params['repetitive_SP_A_duration'] = 80  #in us
    m.params['repump_repetitions'] = [5, 5]
    m.params['repetitive_SP_A_power'] = 30e-9
    #############################
    #!NB: These should go into msmt params
    #############################

    ##########
    # Overwrite certain params to test their influence on the sequence.
    m.params['C13_MBI_threshold_list'] = [0]
    m.params['C13_MBI_threshold'] = 0
    m.params['C13_MBI_RO_duration'] = 100
    m.params['SP_duration_after_C13'] = 250

    # m.autoconfig() (autoconfig is firs line in funcs.finish )
    funcs.finish(m, upload=True, debug=True)
Exemplo n.º 17
0
def MBE(name,
        carbon=1,
        carbon_init_list=[1],
        carbon_init_states=['up'],
        carbon_init_methods=['swap'],
        carbon_init_thresholds=[0],
        el_RO='positive',
        debug=False):

    m = DD.Two_QB_Probabilistic_MBE_v3(name)
    funcs.prepare(m)

    m.params['C13_MBI_threshold_list'] = carbon_init_thresholds
    ''' set experimental parameters '''

    m.params['reps_per_ROsequence'] = 500

    ### Carbons to be used
    m.params['carbon_list'] = [carbon]

    ### Carbon Initialization settings
    m.params['carbon_init_list'] = carbon_init_list
    m.params['init_method_list'] = carbon_init_methods
    m.params['init_state_list'] = carbon_init_states
    m.params['Nr_C13_init'] = len(carbon_init_list)

    ##################################
    ### RO bases (sweep parameter) ###
    ##################################
    m.params['Tomography Bases'] = TD.get_tomo_bases(nr_of_qubits=1)

    ####################
    ### MBE settings ###
    ####################

    m.params['Nr_MBE'] = 0
    m.params['MBE_bases'] = []
    m.params['MBE_threshold'] = 1

    ###################################
    ### Parity measurement settings ###
    ###################################

    m.params['Nr_parity_msmts'] = 0
    m.params['Parity_threshold'] = 1

    ### Derive other parameters
    m.params['pts'] = len(m.params['Tomography Bases'])
    m.params['sweep_name'] = 'Tomography Bases'
    m.params['sweep_pts'] = []

    ### RO params
    m.params['electron_readout_orientation'] = el_RO
    for BP in m.params['Tomography Bases']:
        m.params['sweep_pts'].append(BP[0])

    funcs.finish(m, upload=True, debug=debug)
Exemplo n.º 18
0
def SimpleDecoupling_swp_tau(name,tau_min=9e-6,tau_max=10e-6,tau_step =50e-9, N =16):

    m = DD.SimpleDecoupling(name+'_tau_'+str(tau_min*1e9))

    # print 'threshold =' + str(m.params['MBI_threshold'])
    # print 'pulse_shape = ' +str(m.params['pulse_shape'])
    # NOTE: ADDED from ElectronT1_Hermite on 23-04-204
    m.params.from_dict(qt.exp_params['samples'][SAMPLE])
    m.params.from_dict(qt.exp_params['protocols']['AdwinSSRO'])
    m.params.from_dict(qt.exp_params['protocols'][SAMPLE_CFG]['AdwinSSRO'])
    m.params.from_dict(qt.exp_params['protocols'][SAMPLE_CFG]['AdwinSSRO-integrated'])
    m.params.from_dict(qt.exp_params['protocols']['AdwinSSRO+espin'])
    m.params.from_dict(qt.exp_params['protocols']['cr_mod'])
    m.params.from_dict(qt.exp_params['protocols'][SAMPLE_CFG]['pulses'])
    m.params['temp'] = temperature_sensor.get_readlastval()
    funcs.prepare(m)

    if True: ### if you don't want to do MBI for this script.
        m.params['MBI_threshold'] = 0
        m.params['Ex_SP_amplitude'] = 0
        m.params['Ex_MBI_amplitude'] = 0
        m.params['SP_E_duration'] = 20 #2000
        
        m.params['repump_after_MBI_A_amplitude'] = [25e-9]
        m.params['repump_after_MBI_duration'] = [300] # 50  


    '''set experimental parameters'''
    m.params['reps_per_ROsequence'] = 250 #250 #Repetitions of each data point
    m.params['Initial_Pulse'] ='x'
    if N%4 == 0: 
        m.params['Final_Pulse'] ='-x'
    else:
        m.params['Final_Pulse'] ='x'
    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt'

    Number_of_pulses = N 
    tau_list = np.arange(tau_min,tau_max,tau_step) 
    print tau_list

    m.params['pts']              = len(tau_list)
    m.params['Number_of_pulses'] = Number_of_pulses*np.ones(m.params['pts']).astype(int)
    m.params['tau_list']         = tau_list
    m.params['sweep_pts']        = tau_list*1e6
    m.params['sweep_name']       = 'tau (us)'

    # print m.params['fast_pi_duration']
    # print m.params['fast_pi_amp']

    # m.params['fast_pi2_duration'] = pi_dur
    # m.params['fast_pi2_amp'] = pi_amp




    m.autoconfig()
    funcs.finish(m, upload =True, debug=False)
Exemplo n.º 19
0
def electronramsey_WithNuclearInit(name,
    Addressed_Carbon=1,
    C_13_init_state='up',
    el_RO_result=0,
    electron_RO='positive',
    no_carbon_init = False):

    m = DD.ElectronRamseyWithNuclearInit(name)

    funcs.prepare(m)

    pts = 32
    m.params['pts'] = pts
    m.params['reps_per_ROsequence'] = 1000

    m.params['wait_times'] = np.linspace(0,300000e-9,pts)

    # MW pulses
    m.params['detuning']  = 0 #0.5e6

    m.params['pi2_phases1'] = np.ones(pts) * 0
    m.params['pi2_phases2'] = np.ones(pts) * 360 * m.params['wait_times'] * m.params['detuning']
    m.params['pi2_lengths'] = np.ones(pts) * 16e-9


    # for the autoanalysis
    m.params['sweep_name'] = 'evolution time (ns)'
    m.params['sweep_pts'] = m.params['wait_times']/1e-9

    #define everything carbon related
    m.params['Addressed_Carbon']             = Addressed_Carbon
    m.params['C13_init_state']               = C_13_init_state
    m.params['electron_readout_orientation'] = electron_RO
    m.params['C13_MBI_RO_state']             = el_RO_result


    m.params['no_carbon_init']=no_carbon_init # if True, this flag circumvents any carbon initialization. (does not work yet)

    
    #This part of the script does not yet work with the current adwin script. Causes adwin to crash....
    if no_carbon_init:
        m.params['Nr_C13_init']                  = 0
        m.params['C13_MBI_threshold_list']      = []
    else:
        m.params['Nr_C13_init']                  = 1
        m.params['C13_MBI_threshold_list']      = [0]


    ### MBE settings
    m.params['Nr_MBE']              = 0
    m.params['Nr_parity_msmts']     = 0

    ##########
    # Overwrite certain params to test their influence on the sequence. 
        

    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 20
0
def unconditional_rabi(name,
                       C13_init_method='MBI',
                       carbon_A=1,
                       carbon_B=1,
                       N_list=np.arange(4, 100, 8),
                       tau_list=None,
                       electron_readout_orientation='positive',
                       tomo_basis='X'):

    m = DD.Crosstalk(name)
    funcs.prepare(m)
    '''set experimental parameters'''
    m.params['carbon_nr'] = carbon_A  ### Carbon spin that is prepared via MBI
    m.params[
        'Carbon_B'] = carbon_B  ### Carbon spin that the Rabi/Gate is performed on
    m.params['reps_per_ROsequence'] = 500

    ###############
    # Carbon INIT #
    ###############
    m.params['Nr_C13_init'] = 1
    m.params['C13_init_method'] = C13_init_method
    m.params['C13_init_state'] = 'up'
    m.params['el_after_init'] = '0'

    ###############
    # Rabi params #
    ###############
    m.params['Carbon_B'] = carbon_B
    m.params['Rabi_N_Sweep'] = N_list
    if tau_list == None:
        tau_list = m.params['C' + str(carbon_B) + '_Ren_tau'] * len(N_list)
    m.params['Rabi_tau_Sweep'] = tau_list
    m.params['pts'] = len(m.params['Rabi_N_Sweep'])

    ###############
    # tomo params #
    ###############
    m.params['Tomography Bases'] = tomo_basis
    m.params['electron_readout_orientation'] = electron_readout_orientation

    # sweep stuff
    if len(set(N_list)) != 1:
        print 'SWEEPING N'
        m.params['sweep_name'] = 'Number of pulses'
        m.params['sweep_pts'] = m.params['Rabi_N_Sweep']
    elif len(set(tau_list)) != 1:
        print 'SWEEPING tau'
        m.params['sweep_name'] = 'Rabi tau'
        m.params['sweep_pts'] = m.params['Rabi_tau_Sweep']

    #### parity and mbe settings
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    funcs.finish(m, upload=True, debug=False)
def NoBranching_and_invert_test(name,
                                carbon_list=[1],
                                A_list=['X'],
                                tomo_list=['X'],
                                debug=False,
                                parity_orientations=['positive', 'positive'],
                                use_composite_pi=True):

    m = DD.test_undo_RO_phase_and_invert(name)
    funcs.prepare(m)

    m.params['reps_per_ROsequence'] = 5000
    m.params['pts'] = 1

    m.params['RO_trigger_duration'] = 150e-6

    m.params['use_composite_pi'] = use_composite_pi

    ##### Carbon initializations params
    m.params['Nr_C13_init'] = 1
    m.params['carbon_init_list'] = [1]  #[]
    m.params['init_state_list'] = ['down']  #['up','up']#['up']
    m.params['init_method_list'] = ['MBI']  #['swap','swap']# ['swap']
    m.params['C13_MBI_threshold_list'] = [1]  #[0,0]#[0]

    m.params['Nr_MBE'] = 0
    #m.params['MBE_bases']           = []
    #m.params['MBE_threshold']       = 1
    m.params['Nr_parity_msmts'] = 1
    m.params['add_wait_gate'] = False
    m.params['wait_in_msm1'] = False

    ###### RO mmtA params
    m.params['Parity_A_do_init_pi2'] = True
    m.params['Parity_A_carbon_list'] = carbon_list
    m.params['Parity_A_RO_list'] = A_list
    m.params['Parity_A_RO_orientation'] = parity_orientations[0]

    # if we do invert, we don't have to do anything conditional
    m.params['undo_parityA_conditional_pi'] = False
    m.params['undo_parityA_conditional_pi2'] = False

    m.params['Invert_A_do_final_pi2'] = False
    m.params['Tomo_do_init_pi2'] = False

    for s in tomo_list:
        if 'Z' in s:
            print 'tomography contains Z; doing pi/2 between invertRO and RO'
            m.params['Invert_A_do_final_pi2'] = True
            m.params['Tomo_do_init_pi2'] = True

    m.params['Tomo_carbon_list'] = carbon_list
    m.params['Tomo_RO_orientation'] = parity_orientations[1]
    m.params['Tomo_RO_list'] = tomo_list

    funcs.finish(m, upload=True, debug=debug)
Exemplo n.º 22
0
def Single_C_gate_characterization(name,
                                   carbon_nr=1,
                                   carbon_init_state='up',
                                   el_RO='positive',
                                   debug=False,
                                   el_during_experiment=1,
                                   C13_init_method='MBI',
                                   C13_MBI_threshold=[1],
                                   C13_RO_basis=['Y'],
                                   nr_of_gates_list=np.linspace(0, 5, 6),
                                   gate_phase='Y',
                                   constant_time=False,
                                   reps=200):

    m = DD.Nuclear_gate_characterization(name)
    funcs.prepare(m)
    '''Set parameters'''

    m.params['el_during_experiment'] = el_during_experiment  # 1 or 0 or 'sup'
    if m.params['el_during_experiment'] == 1:
        m.params['el_after_init'] = '1'
    else:
        m.params['el_after_init'] = '0'

    m.params['nr_of_gates_list'] = nr_of_gates_list

    m.params['pts'] = len(nr_of_gates_list)
    ### Derive other parameters

    m.params['sweep_name'] = 'Nr of gates'
    m.params['sweep_pts'] = nr_of_gates_list

    m.params['constant_time'] = constant_time

    m.params['gate_phase'] = 'C13_' + gate_phase + '_phase'

    ### Sweep parameters
    m.params['reps_per_ROsequence'] = reps

    m.params['C13_MBI_RO_state'] = 0
    m.params['C13_MBI_threshold_list'] = C13_MBI_threshold

    m.params['C13_init_method'] = C13_init_method

    m.params['electron_readout_orientation'] = el_RO
    m.params['carbon_nr'] = carbon_nr
    m.params['init_state'] = carbon_init_state
    m.params['C_RO_basis'] = C13_RO_basis

    m.params['Nr_C13_init'] = 1
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    m.params['use_shutter'] = 0

    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 23
0
def Crosstalk(name,
              RO_phase=0,
              RO_Z=False,
              C13_init_method='swap',
              carbon_A=1,
              carbon_B=5,
              N=np.arange(4, 100, 8),
              tau_list=None):

    m = DD_2.Crosstalk(name)
    funcs.prepare(m)
    '''set experimental parameters'''

    m.params[
        'carbon_nr'] = carbon_A  ### Carbon spin that the Ramsey is performed on
    m.params[
        'Carbon_B'] = carbon_B  ### Carbon spin that the Rabi/Gate is performed on

    m.params['reps_per_ROsequence'] = 500
    m.params['C13_init_state'] = 'up'
    m.params['C13_init_method'] = C13_init_method
    m.params['sweep_name'] = 'Number of pulses'
    m.params['C_RO_phase'] = RO_phase
    m.params['C_RO_Z'] = RO_Z
    m.params['el_after_init'] = '0'

    m.params['Tomography Bases'] = ['Z']
    m.params['electron_readout_orientation'] = 'positive'

    #     ### Sweep parameters
    m.params['Rabi_N_Sweep'] = [0] + N

    if tau_list == None:
        tau_list = m.params['C' + str(carbon_B) + '_Ren_tau' +
                            m.params['electron_transition']] * len(N)

    m.params['Rabi_tau_Sweep'] = m.params['C' + str(
        carbon_B) + '_Ren_tau' + m.params['electron_transition']] + tau_list

    m.params['pts'] = len(m.params['Rabi_N_Sweep'])

    x_tick_labels = []
    for i in range(len(tau_list)):
        x_tick_labels = x_tick_labels + [
            str(tau_list[i] * 1e6) + ', ' + str(N_list[i])
        ]

    # m.params['sweep_pts'] = x_tick_labels
    m.params['sweep_pts'] = m.params['Rabi_N_Sweep']

    m.params['Nr_C13_init'] = 1
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    funcs.finish(m, upload=True, debug=False)
Exemplo n.º 24
0
def SweepTransferPhase(name,
                       transfer_begin='_m1',
                       transfer_end='_p1',
                       sweep=linspace(0, 360, 21),
                       invert_RO=False,
                       el_state=0,
                       debug=False,
                       readout_pop='_m1',
                       delay=200e-9):

    m = DD.Electrontransfercalibration_V2(name)
    funcs.prepare(m)
    '''Set parameters'''

    ### Sweep parameters
    m.params['reps_per_ROsequence'] = 1500
    m.params['C13_MBI_RO_state'] = 0
    m.params['do_elec_transfer'] = True

    ### overwritten from msmnt params

    ####################################
    ### Option 1; sweep RO phase ###
    ####################################

    m.params['pts'] = len(sweep)
    m.params['phase_sweep'] = sweep
    m.params['sweep_name'] = 'RO_phase sweep'
    m.params['sweep_pts'] = m.params['phase_sweep']
    m.params['shorten_factor'] = 0.1

    ####################################
    # ### Option 2; Sweep delay ###
    # ####################################

    # ##determine experiment parameters##
    # m.params['pts'] = len(sweep)
    # m.params['delay_sweep'] = sweep
    # m.params['sweep_name'] = 'delay_sweep'
    # m.params['sweep_pts']  = m.params['delay_sweep']
    m.params['delay'] = delay

    m.params['invert_ro'] = invert_RO
    m.params['transfer_begin'] = transfer_begin
    m.params['transfer_end'] = transfer_end
    m.params['readout_pop'] = readout_pop
    m.params['invert_pop_ro'] = True  #added extra to make it run

    m.params['electron_after_init'] = str(el_state)
    m.params['electron_readout_orientation'] = str(el_state)

    m.autoconfig()

    funcs.finish(m, upload=True, debug=debug)
Exemplo n.º 25
0
def Carbon_Ramsey(name, tau=None, N=None):

    #m = DD.NuclearRamsey(name)
    m = DD.NuclearRamsey_v2(name)
    #m = DD.NuclearRamsey_no_elDD(name)

    funcs.prepare(m)
    '''set experimental parameters'''
    m.params['reps_per_ROsequence'] = 2500  #Repetitions of each data point
    m.params['Initial_Pulse'] = 'x'
    m.params['Final_Pulse'] = '-x'
    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt'

    m.params['addressed_carbon'] = 1

    ### Sweep parmater
    m.params['free_evolution_times'] = (np.concatenate([
        np.linspace(1e3, 7.5e3, 25).astype(int) * 1e-9,
        np.linspace(15e3, 22e3, 25).astype(int) * 1e-9
    ]))

    m.params['free_evolution_times'] = np.linspace(10e3, 1000e3,
                                                   30).astype(int) * 1e-9

    m.params['pts'] = len(m.params['free_evolution_times'])
    m.params['sweep_pts'] = m.params['free_evolution_times']
    m.params['sweep_name'] = 'Free evolution time'

    print 'free evolution times: %s' % m.params['free_evolution_times']

    if N == None:
        m.params['C_Ren_N'] = m.params['C' +
                                       str(m.params['addressed_carbon']) +
                                       '_Ren_N'][0]
    else:
        m.params['C_Ren_N'] = N
    if tau == None:
        m.params['C_Ren_tau'] = m.params['C' +
                                         str(m.params['addressed_carbon']) +
                                         '_Ren_tau'][0]
    else:
        m.params['C_Ren_tau'] = tau

    #############################
    #!NB: These should go into msmt params
    #############################
    m.params['min_dec_tau'] = 20e-9 + m.params['fast_pi_duration'] / 2.0
    m.params[
        'max_dec_tau'] = 0.35e-6  #0.35e-6 #Based on measurement for fingerprint at low tau
    m.params['dec_pulse_multiple'] = 4  #lowest multiple of 4 pulses

    m.autoconfig()
    funcs.finish(m, upload=True, debug=False)
    print m.params['sweep_pts']
Exemplo n.º 26
0
def NuclearRamseyWithInitialization_unc_phase(name, 
        carbon_nr           = 1,               
        carbon_init_state   = 'up', 
        el_RO               = 'positive',
        el_state            = 0,
        check_phase_or_offset     = 'phase',
        check_phase         = False,
        debug               = False):

    m = DD.NuclearRamseyWithInitializationUncondCGate(name)
    funcs.prepare(m)

    '''Set parameters'''

    if check_phase_or_offset != 'phase' and check_phase_or_offset != 'offset':
        print "Wrong parameter passed to check_phase_or_offset"
        return

    m.params['check_phase_or_offset'] = check_phase_or_offset
    m.params['check_phase'] = check_phase

    ### Sweep parameters
    m.params['reps_per_ROsequence'] = phase_reps
    m.params['C13_MBI_RO_state'] =0
    m.params['pts'] = 25
    if carbon_nr == 6 and SETUP == 'lt2':
        m.params['pts'] = 21

    m.params['add_wait_gate'] = False
    # m.params['free_evolution_time'] = np.ones(m.params['pts'] )*360e-6
    m.params['C_unc_phase'] = np.linspace(-60, 400,m.params['pts'])    

    m.params['sweep_name'] = 'phase'
    m.params['sweep_pts']  = m.params['C_unc_phase']

    '''Derived and fixed parameters'''

    m.params['electron_readout_orientation'] = el_RO
    m.params['carbon_nr']                    = carbon_nr
    m.params['init_state']                   = carbon_init_state  
    m.params['electron_after_init'] = str(el_state)


    if check_phase_or_offset == 'phase':
        m.params['C13_MBI_threshold_list'] = [1]
    else: #For offset calibration we use MBI.
        m.params['C13_MBI_threshold_list'] = [1]

    m.params['Nr_C13_init']       = 1
    m.params['Nr_MBE']            = 0
    m.params['Nr_parity_msmts']   = 0

  
    funcs.finish(m, upload =True, debug=debug)
Exemplo n.º 27
0
def NuclearRamseyWithInitialization_cal(name,
                                        carbon_nr=5,
                                        carbon_init_state='up',
                                        el_RO='positive',
                                        detuning=0.5e3,
                                        el_state=1,
                                        debug=debug):

    m = DD.NuclearRamseyWithInitialization_v2(name)
    funcs.prepare(m)
    '''Set parameters'''

    ### Sweep parameters
    m.params['reps_per_ROsequence'] = freq_reps
    m.params['C13_MBI_RO_state'] = el_state
    ### overwritten from msmnt params

    ####################################
    ### Option 1; Sweep waiting time ###
    ####################################

    # 1A - Rotating frame with detuning
    m.params['add_wait_gate'] = True
    m.params['pts'] = 21
    m.params['free_evolution_time'] = 400e-6 + np.linspace(
        0e-6, 3 * 1. / detuning, m.params['pts'])

    if m.params['multiple_source']:
        m.params['electron_transition'] = m.params['C' + str(carbon_nr) +
                                                   '_dec_trans']

    m.params['C' + str(carbon_nr) + '_freq_0'] += detuning
    m.params['C' + str(carbon_nr) + '_freq_1' +
             m.params['electron_transition']] += detuning
    m.params['C_RO_phase'] = np.ones(m.params['pts']) * 0

    print 'frequencies'
    print m.params['C' + str(carbon_nr) + '_freq_0']
    print m.params['C' + str(carbon_nr) + '_freq_1' +
                   m.params['electron_transition']]

    m.params['sweep_name'] = 'free_evolution_time'
    m.params['sweep_pts'] = m.params['free_evolution_time']
    '''Derived and fixed parameters'''
    #
    m.params['electron_readout_orientation'] = el_RO
    m.params['carbon_nr'] = carbon_nr
    m.params['init_state'] = carbon_init_state
    m.params['electron_after_init'] = str(el_state)
    m.params['Nr_C13_init'] = 1
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    funcs.finish(m, upload=True, debug=debug)
def NoBranching_no_invert_test(name,
                               carbon_list=[1, 2],
                               A_list=['X', 'X'],
                               tomo_list=['X', 'X'],
                               debug=False,
                               parity_orientations=['positive', 'positive']):

    m = DD.test_undo_RO_phase(name)
    funcs.prepare(m)

    m.params['reps_per_ROsequence'] = 1200
    m.params['pts'] = 1

    m.params['RO_trigger_duration'] = 150e-6

    ##### Carbon initializations params
    m.params['Nr_C13_init'] = 2
    m.params['carbon_init_list'] = [1, 2]
    m.params['init_state_list'] = 2 * ['up']
    m.params['init_method_list'] = 2 * ['swap']
    m.params['C13_MBI_threshold_list'] = [0, 0]

    m.params['Nr_MBE'] = 0
    #m.params['MBE_bases']           = []
    #m.params['MBE_threshold']       = 1
    m.params['Nr_parity_msmts'] = 1
    m.params['add_wait_gate'] = False
    m.params['wait_in_msm1'] = False

    ###### RO mmtA params
    m.params['Parity_A_carbon_list'] = carbon_list
    m.params['Parity_A_RO_list'] = A_list
    m.params['Parity_A_RO_orientation'] = parity_orientations[0]

    # if we do X or Y tomography after, we have to do a conditional pi2, and no init pi2 for RO
    m.params['undo_parityA_conditional_pi2'] = True
    m.params['undo_parityA_conditional_pi'] = False
    # We merges the init pi2 of the tomography
    m.params['Tomo_do_init_pi2'] = False

    # if we do Z tomography after, we have to do a conditional pi, and a init pi2 for RO
    for s in tomo_list:
        if 'Z' in s:
            print 'tomography contains Z; doing conditional pi and pi/2 between invertRO and RO'
            m.params['undo_parityA_conditional_pi2'] = False
            m.params['undo_parityA_conditional_pi'] = True
            m.params['Tomo_do_init_pi2'] = True

    m.params['Tomo_carbon_list'] = carbon_list
    m.params['Tomo_RO_orientation'] = parity_orientations[1]
    m.params['Tomo_RO_list'] = tomo_list

    funcs.finish(m, upload=True, debug=debug)
def SimpleDecoupling_swp_tau(name,tau_min=9e-6,tau_max=10e-6,tau_step =50e-9, N =16, reps_per_ROsequence=250):

    m = DD.SimpleDecoupling(name+'_tau_'+str(tau_min*1e9))

    # print 'threshold =' + str(m.params['MBI_threshold'])
    # print 'pulse_shape = ' +str(m.params['pulse_shape'])
    # NOTE: ADDED from ElectronT1_Hermite on 23-04-2015
    m.params.from_dict(qt.exp_params['samples'][SAMPLE])
    m.params.from_dict(qt.exp_params['protocols']['AdwinSSRO'])
    m.params.from_dict(qt.exp_params['protocols'][SAMPLE_CFG]['AdwinSSRO'])
    m.params.from_dict(qt.exp_params['protocols'][SAMPLE_CFG]['AdwinSSRO-integrated'])
    m.params.from_dict(qt.exp_params['protocols']['AdwinSSRO+espin'])
    m.params.from_dict(qt.exp_params['protocols']['cr_mod'])
    m.params.from_dict(qt.exp_params['protocols'][SAMPLE_CFG]['pulses'])

    funcs.prepare(m)

    if False: ### if you don't want to do MBI for this script.
        m.params['MBI_threshold'] = 0
        m.params['Ex_SP_amplitude'] = 0.
        m.params['Ex_MBI_amplitude'] = 0.
        m.params['SP_E_duration'] = 50 
        
        m.params['repump_after_MBI_A_amplitude'] = [12e-9] #20e-9
        m.params['repump_after_MBI_duration'] = [200] # 50  


    '''set experimental parameters'''
    m.params['reps_per_ROsequence'] = reps_per_ROsequence
    m.params['Initial_Pulse'] ='x'

    m.params['Final_Pulse'] ='-x'

    m.params['Decoupling_sequence_scheme'] = 'repeating_T_elt'
    # m.params['Decoupling_sequence_scheme'] = 'single_block'
    Number_of_pulses = N 
    tau_list = np.arange(tau_min,tau_max,tau_step) 
    print tau_list

    m.params['pts']              = len(tau_list)
    m.params['Number_of_pulses'] = Number_of_pulses*np.ones(m.params['pts']).astype(int)
    m.params['tau_list']         = tau_list
    m.params['sweep_pts']        = tau_list*1e6
    m.params['sweep_name']       = 'tau (us)'

    m.params['DD_in_eigenstate'] = False



    m.autoconfig()
    funcs.finish(m, upload = True, debug=False)
Exemplo n.º 30
0
def NuclearT1(name,
              carbon_state='up',
              el_RO='positive',
              carbon_nr=5,
              el_RO_result=0,
              el_after_init=0,
              pts=5,
              short_time=1.0e-4,
              long_time=20.0e-3):

    m = DD.NuclearT1_OLD(name)
    funcs.prepare(m)
    '''set experimental parameters'''
    m.params['wait_times'] = np.r_[10e-4, 50e-4, 50e-3, 100e-3, 200e-3, 500e-3,
                                   1., 2.]
    ### Sweep parameters
    m.params['reps_per_ROsequence'] = 400  #Repetitions of each data point
    m.params['pts'] = len(m.params['wait_times'])

    m.params['carbon_nr'] = carbon_nr
    m.params['C13_init_state'] = carbon_state
    m.params['electron_readout_orientation'] = el_RO
    m.params['C13_MBI_RO_state'] = el_RO_result
    m.params[
        'el_after_init'] = el_after_init  #if ==1 then a micrwave pi pulse prings the electorn into ms=-1

    m.params['C_RO_phase'] = m.params['pts'] * ['Z']

    m.params['sweep_name'] = 'wait_times'

    # m.params['wait_times'] = np.linspace(short_time,long_time,m.params['pts']) #Note: wait time must be at least carbon init time +5us
    m.params['sweep_pts'] = m.params['wait_times']

    m.params['Nr_C13_init'] = 1  #len(carbon_list)

    ### MBE settings
    m.params['Nr_MBE'] = 0
    m.params['Nr_parity_msmts'] = 0

    #############################
    #!NB: These should go into msmt params
    #############################

    ##########
    # Overwrite certain params to test their influence on the sequence.
    # m.params['C13_MBI_threshold_list']      = [0]
    # m.params['C13_MBI_RO_duration']         = 100
    # m.params['SP_duration_after_C13']       = 250

    # m.autoconfig() (autoconfig is firs line in funcs.finish )
    funcs.finish(m, upload=True, debug=False)
def SimpleDecoupling(name):

    m = DD.SimpleDecoupling(name)
    funcs.prepare(m) 

    '''set experimental parameters'''
        #Spin pumping and readout
    m.params['SP_duration'] = 250
    m.params['Ex_RO_amplitude'] = 8e-9 #10e-9
    m.params['A_SP_amplitude'] = 40e-9
    m.params['Ex_SP_amplitude'] = 0.
    m.params['reps_per_ROsequence'] = 300


        #Set sequence wait time for AWG triggering (After AWG trigger? Tim)
    m.params['sequence_wait_time'] = 0


    #######


    #######

        #Plot parameters
    pts = 3
    m.params['pts'] = pts#len(m.params['sweep_pts']) 
    m.params['sweep_name'] = 'tau (us)'
    m.params['sweep_pts'] =np.linspace(2.975e-6,10.0*2.975e-6,pts) # m.params['tau_list']*1e6  #np.linspace(1,10,10)#
    
    m.autoconfig()

    #Decoupling specific parameters
    m.params['Number_of_pulses'] = 16
    m.params['tau_list'] = np.linspace(2.975e-6,10.0*2.975e-6,pts) #Larmor period for B =314G
    m.params['Initial_Pulse'] ='pi/2'
    m.params['Final_Pulse'] ='pi/2'



    '''generate sequence'''
    m.generate_sequence(upload=True)
Exemplo n.º 32
0
def run(name):
    m = pulsar_mbi_espin.ElectronRabi(name)
    funcs.prepare(m)
    
    pts = 36
    m.params['pts'] = pts
    m.params['reps_per_ROsequence'] = 200
    m.params['MW_pulse_multiplicities'] = np.ones(pts).astype(int)
    m.params['MW_pulse_delays'] = np.ones(pts) * 2000e-9

    # MW pulses
    m.params['MW_pulse_durations']  = np.ones(pts) * 2e-6 
    m.params['MW_pulse_amps']       = np.ones(pts) * 0.03
    m.params['MW_pulse_mod_frqs']   = linspace(m.params['MW_modulation_frequency']-4.5e6, m.params['MW_modulation_frequency']+4.5e6, pts)
    print m.params['MW_pulse_mod_frqs']

    # for the autoanalysis
    m.params['sweep_name'] = 'MW pulse frequency (MHz)'
    m.params['sweep_pts']  = (m.params['MW_pulse_mod_frqs'] + m.params['mw_frq'])/1.e6
    funcs.finish(m, upload=0, debug=False)

    print m.params['AWG_MBI_MW_pulse_mod_frq']
Exemplo n.º 33
0
def run(name):
    m = pulsar_mbi_espin.ElectronRabi(name)
    funcs.prepare(m)
    print 'MBI threshold =' + str(m.params['MBI_threshold'])
    print 'Ex_MBI_amplitude =' + str(m.params['Ex_MBI_amplitude'])
    print 'SSRO_duration =' + str(m.params['SSRO_duration'])
    
    pts = 31
    m.params['pts'] = pts
    m.params['reps_per_ROsequence'] = 300
    m.params['MW_pulse_multiplicities'] = np.ones(pts).astype(int)
    m.params['MW_pulse_delays'] = np.ones(pts) * 2000e-9

    # MW pulses
    m.params['MW_pulse_durations']  = np.linspace(0,400e-9,pts) + 10e-9 #why this +10 here?
    m.params['MW_pulse_amps']       = np.ones(pts) * 1
    m.params['MW_pulse_mod_frqs']   = np.ones(pts) * m.params['AWG_MBI_MW_pulse_mod_frq']

    print m.params['MW_pulse_mod_frqs']

    # for the autoanalysis
    m.params['sweep_name'] = 'MW pulse duration (ns)'
    m.params['sweep_pts']  = m.params['MW_pulse_durations'] * 1e9
    funcs.finish(m, debug=False)
Exemplo n.º 34
0
def prepare(m):
    funcs.prepare(m, SIL_NAME)