Exemplo n.º 1
0
def LeeFilter(image, kernelLength, show=False):
    import numpy as np
    import cv2
    from medImUtils import imUtils

    image = imUtils.im2double(image)
    rect = cv2.selectROI(image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    c1, c2 = rect[0], rect[0] + rect[2]
    l1, l2 = rect[1], rect[0] + rect[3]
    stdRect = np.std(image[l1:l2, c1:c2])
    newImage = np.zeros(image.shape)
    w = np.zeros((kernelLength, kernelLength), dtype=int)
    w_center = int((w.shape[0]) / 2)
    for indexrow, frow in enumerate(image[:-(w_center * 2)]):
        for indexcolumn, fcolumn in enumerate(frow[:-(w_center * 2)]):
            maskLocal = image[indexrow:1 + indexrow + w_center * 2,
                              indexcolumn:1 + indexcolumn + w_center * 2]
            meanMask = np.mean(maskLocal + w)
            k = np.clip(1 - (stdRect / (0.001 + maskLocal.std())), 0, 1)
            newImage[indexrow + w_center,
                     indexcolumn + w_center] = meanMask + k * (
                         image[indexrow + w_center, indexcolumn + w_center] -
                         meanMask)
    if show:
        imUtils.showImageStyle(1, 2, {
            'I1': imUtils.im2uint8(image),
            'Imean': imUtils.im2uint8(newImage)
        }, ['Original', 'Lee Filter'])
    return newImage
Exemplo n.º 2
0
def sobel(image):
    """
    Filtro Sobel
    
    INPUTS:
        image: imagem a ser filtrada
    OUTPUTS:
        gradient_sobel: gradiente de Sobel resultante das derivadas x e y
    """
    import numpy as np
    from medImUtils import imUtils
    from scipy import ndimage
    wx = np.asarray([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
    wy = np.asarray([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
    image_norm = imUtils.im2double(image)
    dx = ndimage.convolve(image_norm, wx)
    dy = ndimage.convolve(image_norm, wy)
    gradient_sobel = np.sqrt(dx**2 + dy**2)
    return gradient_sobel
Exemplo n.º 3
0
def priwitt(image):
    """
    Filtro Priwitt
    
    INPUTS:
        image: imagem a ser filtrada
    OUTPUTS:
        gradient_priwitt: gradiente de Priwitt resultante das derivadas x e y
    """
    import numpy as np
    from medImUtils import imUtils
    from scipy import ndimage
    wx = np.asarray([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]])
    wy = np.asarray([[-1, -1, -1], [0, 0, 0], [1, 1, 1]])
    image_norm = imUtils.im2double(image)
    dx = ndimage.convolve(image_norm, wx)
    dy = ndimage.convolve(image_norm, wy)
    gradient_priwitt = np.sqrt(dx**2 + dy**2)
    return gradient_priwitt
Exemplo n.º 4
0
def laplace(image):
    """
    Filtros Laplacianos
    
    INPUTS:
        image: imagem a ser filtrada
    OUTPUTS:
        dL1: Laplaciano resultante da máscara [[0,1,0],[1,-4,1],[0,1,0]]
        
        dL2: Laplaciano resultante da máscara [[1,1,1],[1,-8,1],[1,1,1]]
    """
    import numpy as np
    from medImUtils import imUtils
    from scipy import ndimage
    L1 = np.asarray([[0, 1, 0], [1, -4, 1], [0, 1, 0]])
    L2 = np.asarray([[1, 1, 1], [1, -8, 1], [1, 1, 1]])
    image_norm = imUtils.im2double(image)
    dL1 = ndimage.convolve(image_norm, L1)
    dL2 = ndimage.convolve(image_norm, L2)
    return dL1, dL2
Exemplo n.º 5
0
kernelLength = 7
newImage = np.zeros(image.shape)
w = np.zeros((kernelLength, kernelLength), dtype=int)
w_center = int((w.shape[0]) / 2)
for indexrow, frow in enumerate(image[:-(w_center * 2)]):
    for indexcolumn, fcolumn in enumerate(frow[:-(w_center * 2)]):
        maskLocal = image[indexrow:1 + indexrow + w_center * 2,
                          indexcolumn:1 + indexcolumn + w_center * 2]
        meanMask = np.mean(maskLocal + w)
        k = np.clip(1 - (stdRect / (0.001 + maskLocal.std())), 0,
                    1)  # minimo é zero e maximo é 1
        newImage[
            indexrow + w_center, indexcolumn + w_center] = meanMask + k * (
                image[indexrow + w_center, indexcolumn + w_center] - meanMask)

imUtils.showImageStyle(1, 2, {
    'I1': imUtils.im2uint8(I1),
    'newImage': imUtils.im2uint8(newImage)
}, ['Original', 'Image Filtered'])
#%% Função zero bala Filtro de Lee (esse é rapidaooooo)
newImage = imUtils.LeeFilter(I1, 9, True)

#%% DESAFIO
sobel_Image = imUtils.im2double(imUtils.sobel(I1))
meanI1 = imUtils.im2double(imUtils.meanFilterFast(I1, 11))
challenge = meanI1 + sobel_Image * (I1 - meanI1)
imUtils.showImageStyle(1, 2, {
    'I1': imUtils.im2uint8(I1),
    'challenge': imUtils.im2uint8(challenge)
}, ['Original', 'Challenge'])