Exemplo n.º 1
0
 def _get_value_filters(self, name_or_str):
     origin_scope = name_or_str if isinstance(name_or_str, Name) else None
     for f in self.get_filters(origin_scope=origin_scope):
         yield f
     # This covers the case where a stub files are incomplete.
     if self.is_stub():
         from medi.inference.gradual.conversion import convert_values
         for c in convert_values(ValueSet({self})):
             for f in c.get_filters():
                 yield f
Exemplo n.º 2
0
    def completion_names(self, inference_state, only_modules=False):
        """
        :param only_modules: Indicates wheter it's possible to import a
            definition that is not defined in a module.
        """
        if not self._infer_possible:
            return []

        names = []
        if self.import_path:
            # flask
            if self._str_import_path == ('flask', 'ext'):
                # List Flask extensions like ``flask_foo``
                for mod in self._get_module_names():
                    modname = mod.string_name
                    if modname.startswith('flask_'):
                        extname = modname[len('flask_'):]
                        names.append(ImportName(self._module_context, extname))
                # Now the old style: ``flaskext.foo``
                for dir in self._sys_path_with_modifications(
                        is_completion=True):
                    flaskext = os.path.join(dir, 'flaskext')
                    if os.path.isdir(flaskext):
                        names += self._get_module_names([flaskext])

            values = self.follow()
            for value in values:
                # Non-modules are not completable.
                if value.api_type != 'module':  # not a module
                    continue
                if not value.is_compiled():
                    # sub_modules_dict is not implemented for compiled modules.
                    names += value.sub_modules_dict().values()

            if not only_modules:
                from medi.inference.gradual.conversion import convert_values

                both_values = values | convert_values(values)
                for c in both_values:
                    for filter in c.get_filters():
                        names += filter.values()
        else:
            if self.level:
                # We only get here if the level cannot be properly calculated.
                names += self._get_module_names(self._fixed_sys_path)
            else:
                # This is just the list of global imports.
                names += self._get_module_names()
        return names
Exemplo n.º 3
0
    def _infer(self, only_stubs=False, prefer_stubs=False):
        assert not (only_stubs and prefer_stubs)

        if not self._name.is_value_name:
            return []

        # First we need to make sure that we have stub names (if possible) that
        # we can follow. If we don't do that, we can end up with the inferred
        # results of Python objects instead of stubs.
        names = convert_names([self._name], prefer_stubs=True)
        values = convert_values(
            ValueSet.from_sets(n.infer() for n in names),
            only_stubs=only_stubs,
            prefer_stubs=prefer_stubs,
        )
        resulting_names = [c.name for c in values]
        return [
            self if n == self._name else Name(self._inference_state, n)
            for n in resulting_names
        ]
Exemplo n.º 4
0
        def definition(correct, correct_start, path):
            should_be = set()
            for match in re.finditer('(?:[^ ]+)', correct):
                string = match.group(0)
                parser = grammar37.parse(string, start_symbol='eval_input', error_recovery=False)
                parser_utils.move(parser.get_root_node(), self.line_nr)
                node = parser.get_root_node()
                module_context = script._get_module_context()
                user_context = get_user_context(module_context, (self.line_nr, 0))
                node.parent = user_context.tree_node
                results = convert_values(user_context.infer_node(node))
                if not results:
                    raise Exception('Could not resolve %s on line %s'
                                    % (match.string, self.line_nr - 1))

                should_be |= set(Name(inference_state, r.name) for r in results)
            debug.dbg('Finished getting types', color='YELLOW')

            # Because the objects have different ids, `repr`, then compare.
            should = set(comparison(r) for r in should_be)
            return should
Exemplo n.º 5
0
    def _infer(self, line, column, only_stubs=False, prefer_stubs=False):
        pos = line, column
        leaf = self._module_node.get_name_of_position(pos)
        if leaf is None:
            leaf = self._module_node.get_leaf_for_position(pos)
            if leaf is None or leaf.type == 'string':
                return []

        context = self._get_module_context().create_context(leaf)

        values = helpers.infer(self._inference_state, context, leaf)
        values = convert_values(
            values,
            only_stubs=only_stubs,
            prefer_stubs=prefer_stubs,
        )

        defs = [classes.Name(self._inference_state, c.name) for c in values]
        # The additional set here allows the definitions to become unique in an
        # API sense. In the internals we want to separate more things than in
        # the API.
        return helpers.sorted_definitions(set(defs))