Exemplo n.º 1
0
def train():
    args = parse_args().parse_args(args=[])

    path_to_save = os.path.join(args.save_folder, args.dataset, args.version)
    os.makedirs(path_to_save, exist_ok=True)

    # use hi-res backbone
    if args.high_resolution:
        print('use hi-res backbone')
        hr = True
    else:
        hr = False

    # cuda
    if args.cuda:
        print('use cuda')
        cudnn.benchmark = True
        device = torch.device("cuda", 0)
    else:
        device = torch.device("cpu")

    # multi-scale
    if args.multi_scale:
        print('use the multi-scale trick ...')
        train_size = config_0['NIH_pancreas_data_aimshape']
        val_size = config_0['NIH_pancreas_data_aimshape']
    else:
        train_size = config_0['NIH_pancreas_data_aimshape']
        val_size = config_0['NIH_pancreas_data_aimshape']

    cfg = train_cfg
    # dataset and evaluator
    print("Setting Arguments.. : ", args)
    print("----------------------------------------------------------")
    print('Loading the dataset...')
    if args.dataset == 'pnens':
        num_classes = 1

        # dataset_pkl = load_from_pkl(r'/data/liyi219/pnens_3D_data/after_dealing/pre_order0_128_128_64_new.pkl')
        dataset_pkl = load_from_pkl(
            r'E:\ly\pnens_data\nas_data\v1_data\NIH\pre_order0_128_128_64_new.pkl'
        )
        dataset = datanih(dataset_pkl)
        evaluator = myEvaluator(dataset=dataset,
                                data_root="/data/data4T/ly/data/pnens_3D",
                                img_size=val_size,
                                device=device,
                                transform=BaseTransform(val_size),
                                labelmap=('pnens'))

    else:
        print('unknow dataset !! Only support voc and coco !!')
        exit(0)

    print('Training model on: yolov3_3D')
    print('The dataset size:', len(dataset))
    print("----------------------------------------------------------")

    # dataloader
    dataloader = torch.utils.data.DataLoader(dataset,
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             collate_fn=detection_collate,
                                             num_workers=args.num_workers,
                                             pin_memory=True)

    if args.version == 'yolo_v3':
        from models.yolo_v3 import myYOLOv3
        # anchor_size = MULTI_ANCHOR_SIZE if args.dataset == 'voc' else MULTI_ANCHOR_SIZE_COCO
        anchor_size = anchor_size_3D_try

        yolo_net = myYOLOv3(device,
                            input_size=train_size,
                            num_classes=num_classes,
                            trainable=True,
                            anchor_size=anchor_size,
                            hr=hr)
        print('Let us train yolo_v3 on the %s dataset ......' % (args.dataset))

    else:
        print('Unknown version !!!')
        exit()

    model = yolo_net
    model.to(device).train()

    # use tfboard
    if args.tfboard:
        print('use tensorboard')
        from torch.utils.tensorboard import SummaryWriter
        c_time = time.strftime('%Y-%m-%d %H:%M:%S',
                               time.localtime(time.time()))
        log_path = os.path.join('log/coco/', args.version, c_time)
        os.makedirs(log_path, exist_ok=True)

        writer = SummaryWriter(log_path)

    # keep training
    if args.resume is not None:
        print('keep training model: %s' % (args.resume))
        model.load_state_dict(torch.load(args.resume, map_location=device))

    # optimizer setup
    base_lr = args.lr
    tmp_lr = base_lr
    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.weight_decay)

    max_epoch = cfg['max_epoch']
    epoch_size = len(dataset) // args.batch_size

    # start training loop
    t0 = time.time()

    for epoch in range(args.start_epoch, max_epoch):
        # if epoch == 1: break
        # use cos lr
        if args.cos and epoch > 20 and epoch <= max_epoch - 20:
            # use cos lr
            tmp_lr = 0.00001 + 0.5 * (base_lr - 0.00001) * (
                1 + math.cos(math.pi * (epoch - 20) * 1. / (max_epoch - 20)))
            set_lr(optimizer, tmp_lr)

        elif args.cos and epoch > max_epoch - 20:
            tmp_lr = 0.00001
            set_lr(optimizer, tmp_lr)

        # use step lr
        else:
            if epoch in cfg['lr_epoch']:
                tmp_lr = tmp_lr * 0.1
                set_lr(optimizer, tmp_lr)

        for iter_i, (images, targets) in enumerate(dataloader):
            """
            images [1, 1, 128, 128, 64]
            targets [y1, y2, x1, x2, z1, z2, 0] 相对
            """
            # targets [x1, x2, y1, y2, z1, z2, 有无物体(0 or 1)] 相对坐标[0~1]
            # if iter_i == 0: break
            if not args.no_warm_up:
                if epoch < args.wp_epoch:
                    tmp_lr = base_lr * pow((iter_i + epoch * epoch_size) * 1. /
                                           (args.wp_epoch * epoch_size), 4)
                    # tmp_lr = 1e-6 + (base_lr-1e-6) * (iter_i+epoch*epoch_size) / (epoch_size * (args.wp_epoch))
                    set_lr(optimizer, tmp_lr)

                elif epoch == args.wp_epoch and iter_i == 0:
                    tmp_lr = base_lr
                    set_lr(optimizer, tmp_lr)

            # to device
            images = images.to(device)

            # multi-scale trick
            if iter_i % 10 == 0 and iter_i > 0 and args.multi_scale:
                # randomly choose a new size
                size = random.randint(10, 19) * 32
                train_size = [size, size]
                model.set_grid(train_size)
            if args.multi_scale:
                # interpolate
                # 上采样
                images = torch.nn.functional.interpolate(images,
                                                         size=train_size,
                                                         mode='bilinear',
                                                         align_corners=False)

            # make labels
            # print(targets)
            targets = [label.tolist() for label in targets]
            targets = tools.multi_gt_creator3D(input_size=train_size,
                                               strides=model.stride,
                                               label_lists=targets,
                                               anchor_size=anchor_size)
            # [batch_index, featuremap_index, grid_x* grid_y * grid_z * ab_ind, 参数(15)]
            # (15): [obj, class, tx, ty, tz, th, tw, td, weight, (xmin, ymin, zmin, ymax, xmax, zmax)(绝对)]
            targets = torch.tensor(targets).float().to(device)

            # forward and loss
            conf_loss, cls_loss, txtytwth_loss, total_loss, dice_loss = model(
                images, target=targets)

            # backprop
            total_loss.backward()
            optimizer.step()
            optimizer.zero_grad()

            # display
            if iter_i % 10 == 0:
                if args.tfboard:
                    # viz loss
                    writer.add_scalar('object loss', conf_loss.item(),
                                      iter_i + epoch * epoch_size)
                    writer.add_scalar('class loss', cls_loss.item(),
                                      iter_i + epoch * epoch_size)
                    writer.add_scalar('local loss', txtytwth_loss.item(),
                                      iter_i + epoch * epoch_size)

                t1 = time.time()

                print(
                    '[Epoch %d/%d][Iter %d/%d][lr %.6f]'
                    '[Loss: obj %.2f ||dice_loss %.2f || cls %.2f || bbox %.2f || total %.2f || size %d || time: %.2f]'
                    % (epoch + 1, max_epoch, iter_i, epoch_size, tmp_lr,
                       conf_loss.item(), dice_loss.item(), cls_loss.item(),
                       txtytwth_loss.item(), total_loss.item(), train_size[0],
                       t1 - t0),
                    flush=True)

                t0 = time.time()

        # evaluation
        if (epoch + 1) % args.eval_epoch == 0:
            model.trainable = False
            model.set_grid(val_size)
            model.eval()

            # evaluate
            # evaluator.evaluate(model)

            # convert to training mode.
            model.trainable = True
            model.set_grid(train_size)
            model.train()

        # save model
        if (epoch + 1) % 5 == 0:
            print('Saving state, saving in {} epoch{}:'.format(
                os.path.join(path_to_save, args.version),
                epoch + 1,
            ))
            torch.save(
                model.state_dict(),
                os.path.join(path_to_save,
                             args.version + '_' + repr(epoch + 1) + '.pth'))
Exemplo n.º 2
0
else:
    train_size = config_0['NIH_pancreas_data_aimshape']
    val_size = config_0['NIH_pancreas_data_aimshape']

cfg = train_cfg
# dataset and evaluator
print("Setting Arguments.. : ", args)
print("----------------------------------------------------------")
print('Loading the dataset...')
if args.dataset == 'pnens':
    num_classes = 1

    # dataset2 = load_from_pkl(r'/data/liyi219/pnens_3D_data/after_dealing/pre_order0_128_128_64_new.pkl')
    dataset2 = load_from_pkl(r'E:\data\pre_order0_128_128_64_new.pkl')
    # dataset = rechange(dataset2)
    dataset = datanih(dataset2)
    evaluator = myEvaluator(dataset=dataset,
                            data_root="/data/data4T/ly/data/pnens_3D",
                            img_size=val_size,
                            device=device,
                            transform=BaseTransform(val_size),
                            labelmap=('pnens'))

else:
    print('unknow dataset !! Only support voc and coco !!')
    exit(0)

print('Training model on: yolov3_3D')
print('The dataset size:', len(dataset))
print("----------------------------------------------------------")
Exemplo n.º 3
0
def obj_test():
    args = parse_args().parse_args(args=[])
    device = torch.device("cpu")

    input_size = [128, 128, 64]

    # dataset
    class_names = ('pnens')
    # dataset2 = load_from_pkl(r'/data/liyi219/pnens_3D_data/after_dealing/pre_order0_128_128_64_new.pkl')
    dataset2 = load_from_pkl(r'E:\data\pre_order0_128_128_64_new.pkl')
    dataset = datanih(dataset2)

    # load net
    from models.yolo_v3 import myYOLOv3

    anchor_size = anchor_size_3D_try
    net = myYOLOv3(device,
                   input_size=input_size,
                   num_classes=1,
                   conf_thresh=args.conf_thresh,
                   nms_thresh=args.nms_thresh,
                   anchor_size=anchor_size)

    net.load_state_dict(
        torch.load(os.path.join(args.trained_model + 'yolo_v3_200.pth'),
                   map_location=device))
    net.to(device).eval()
    num_images = len(dataset)
    result = []
    images = []
    bbox_gt = []
    for index in range(num_images):
        if index == 4: break
        print('Testing image {:d}/{:d}....'.format(index + 1, num_images))
        img, _, height, width, depth = dataset.pull_item(index)
        bb = dataset.get_bbox_juedui(index)
        bbox_gt.append(bb)
        scale = np.array([[height, width, depth, height, width, depth]])
        images.append(img)
        # to tensor
        x = img
        x = x.unsqueeze(0).to(device)
        t0 = time.time()
        # forward
        bboxes, scores, _ = net(x)
        bboxes = bboxes * scale
        if not scores.size:
            print('{} has not bbox'.format(index))
            continue
        best_scores = np.argmax(scores, axis=0)
        bboxes = bboxes[best_scores]
        # print(scores[best_scores])
        # print([bboxes, best_scores])
        result.append([bboxes, best_scores])
        print("detection {} time used ".format(index), time.time() - t0, "s")

    if False:
        pred_1 = torch.sigmoid(pred_1)
        pred_1 = pred_1.data.cpu().numpy()[0, 0]
        img3D = pred_1
        vol = mlab.pipeline.volume(mlab.pipeline.scalar_field(img3D),
                                   name='3-d ultrasound ')
        mlab.colorbar(orientation='vertical')
        mlab.show()
        show3Dslice(img3D)
        img_resize = resize3D(img3D, [128, 64, 64])
        show3Dslice(img_resize)
        img = img.squeeze(0).data.cpu().numpy()

        show3Dslice(img)

    test_index = 1
    img3D = images[test_index]
    img3D = img3D.squeeze(dim=0)
    img3D = np.array(img3D)
    # show3D(img3D)
    # show3Dslice(img3D)

    # 画bbox -- [x1, y1, z1, x2, y2, z2]
    line_thick = 1
    bbox3D = result[test_index][0]
    # print(bbox3D)
    # print(result[0][1])
    bbox3D = np.floor(bbox3D)
    bbox3D = np.array(bbox3D, dtype=int)
    # show3Dbbox_img(img3D, bbox3D, 2)
    bbox_in_img = get_bbox_in_img(img3D, bbox3D, line_thick)
    bb_gt = bbox_gt[test_index]
    x1, x2, y1, y2, z1, z2 = bb_gt
    bb_gt = [x1, y1, z1, x2, y2, z2]
    bb_gt = np.floor(bb_gt)
    bb_gt = np.array(bb_gt, dtype=int)
    print(bbox3D)
    print(bb_gt)
    bbox_in_img = get_bbox_in_img(bbox_in_img,
                                  bb_gt,
                                  line_thick,
                                  line_value=2e3)
    # bbox_in_img = np.hstack((bbox_in_img, img3D))
    show3Dslice(bbox_in_img)
Exemplo n.º 4
0
def see_feature_segment():
    args = parse_args().parse_args(args=[])
    device = torch.device("cpu")

    input_size = [128, 128, 64]

    # dataset
    num_classes = 1
    class_names = ('pnens')
    # dataset2 = load_from_pkl(r'/data/liyi219/pnens_3D_data/after_dealing/pre_order0_128_128_64_new.pkl')
    dataset2 = load_from_pkl(r'E:\data\pre_order0_128_128_64_new.pkl')
    dataset = datanih(dataset2)

    # load net
    from models.yolo_v3 import myYOLOv3

    anchor_size = anchor_size_3D_try
    net = myYOLOv3(device,
                   input_size=input_size,
                   num_classes=1,
                   conf_thresh=args.conf_thresh,
                   nms_thresh=args.nms_thresh,
                   anchor_size=anchor_size)

    net.load_state_dict(
        torch.load(os.path.join(args.trained_model + 'yolo_v3_200.pth'),
                   map_location=device))
    net.to(device).eval()
    num_images = len(dataset)
    result = []
    images = []
    for index in range(num_images):
        if index == 1: break
        print('Testing image {:d}/{:d}....'.format(index + 1, num_images))
        img, _, height, width, depth = dataset.pull_item(index)
        scale = np.array([[height, width, depth, height, width, depth]])
        images.append(img)
        # to tensor
        x = img
        x = x.unsqueeze(0).to(device)
        t0 = time.time()
        # forward
        bboxes, scores, _ = net(x)
        pred_1, pred_2, pred_3 = net.get_feature_map(x)
        bboxes = bboxes * scale
        if not scores.size:
            print('{} has not bbox'.format(index))
            continue
        best_scores = np.argmax(scores, axis=0)
        bboxes = bboxes[best_scores]
        result.append([bboxes, scores])
        print("detection {} time used ".format(index), time.time() - t0, "s")

    img3D = images[0]
    img3D = img3D.squeeze(dim=0)
    img3D = np.array(img3D)
    pred_1 = torch.sigmoid(pred_1)
    pred_1 = pred_1.data.cpu().numpy()[0, 0]
    show3D(pred_1)
    img_resize = resize3D(pred_1, [128, 128, 64])
    # show3Dslice(img_resize)
    img_and_fearturemap = np.hstack((img_resize, img3D))
    show3Dslice(img_and_fearturemap)
Exemplo n.º 5
0
def see_bbox():
    args = parse_args().parse_args(args=[])
    device = torch.device("cpu")
    input_size = [128, 128, 64]
    # dataset2 = load_from_pkl(r'/data/liyi219/pnens_3D_data/after_dealing/pre_order0_128_128_64_new.pkl')
    dataset2 = load_from_pkl(
        r'E:\ly\pnens_data\nas_data\v1_data\NIH\pre_order0_128_128_64_new.pkl')
    dataset = datanih(dataset2)

    # load net
    from models.yolo_v3 import myYOLOv3

    anchor_size = anchor_size_3D_try
    net = myYOLOv3(device,
                   input_size=input_size,
                   num_classes=1,
                   conf_thresh=args.conf_thresh,
                   nms_thresh=args.nms_thresh,
                   anchor_size=anchor_size)

    net.load_state_dict(
        torch.load(os.path.join(args.trained_model + 'yolo_v3_200.pth'),
                   map_location=device))
    net.to(device).eval()
    num_images = len(dataset)
    result = []
    images = []
    masks = []
    bbox_gt = []
    for index in range(num_images):
        if index == 1: break

        # target
        im, gt = dataset.__getitem__(index)
        targets = get_targets(gt)
        # gt [[obj, class, tx, ty, tz, tw, th, td, weight, (xmin, ymin, zmin, xmax, ymax, zmax)(绝对)]]
        gt = targets[np.where(targets == 1)[0:2]]
        txtytztwthtd = gt[0, 2:8]
        gt_obj = targets[:, :, 0]
        map_obj = obj_map_get(gt_obj)

        print('Testing image {:d}/{:d}....'.format(index + 1, num_images))
        img, _, mask, height, width, depth = dataset.pull_item(index)
        bb = dataset.get_bbox_juedui(index)  # [y1, y2, x1, x2, z1, z2] 绝对
        bbox_gt.append(bb)
        scale = np.array([[width, height, depth, width, height, depth]])
        images.append(img)
        masks.append(mask)
        # to tensor
        x = torch.tensor(img)
        x = x.unsqueeze(0).to(device)
        x = x.unsqueeze(0).to(device)
        t0 = time.time()
        # forward
        bboxes, scores, _ = net(x)  # bboxes[x1, y1, z1, x2, y2, z2] 相对
        bboxes = bboxes * scale  # to绝对
        if not scores.size:
            print('{} has not bbox'.format(index))
            continue
        best_scores = np.argmax(scores, axis=0)
        bboxes = bboxes[best_scores]
        # print(scores[best_scores])
        # print([bboxes, best_scores])
        result.append([bboxes, best_scores])
        print("detection {} time used ".format(index), time.time() - t0, "s")

    if False:
        pred_1 = torch.sigmoid(pred_1)
        pred_1 = pred_1.data.cpu().numpy()[0, 0]
        img3D = pred_1
        vol = mlab.pipeline.volume(mlab.pipeline.scalar_field(img3D),
                                   name='3-d ultrasound ')
        mlab.colorbar(orientation='vertical')
        mlab.show()
        show3Dslice(img3D)
        img_resize = resize3D(img3D, [128, 64, 64])
        show3Dslice(img_resize)
        img = img.squeeze(0).data.cpu().numpy()

        show3Dslice(img)

    test_index = 0
    # img3D[y, x, z]
    img3D = images[test_index]
    mask3D = masks[test_index]

    # show3D(img3D)
    # show3Dslice(img3D)

    # 画bbox -- [x1, y1, z1, x2, y2, z2] 绝对
    line_thick = 1
    bbox3D = result[test_index][0]
    x1, y1, z1, x2, y2, z2 = bbox3D
    bbox3D = [y1, x1, z1, y2, x2, z2]
    bbox3D = np.floor(bbox3D)
    bbox3D = np.array(bbox3D, dtype=int)
    # show3Dbbox_img(img3D, bbox3D, 2)
    bboxInimg = bbox_in_img_for_slice(img3D, bbox3D, line_thick, -2e3)
    # show3Dslice(bboxInimg)
    bb_gt = bbox_gt[test_index]  # [y1, y2, x1, x2, z1, z2] 绝对
    y1, y2, x1, x2, z1, z2 = bb_gt
    bb_gt = [y1, x1, z1, y2, x2, z2]
    bb_gt = np.floor(bb_gt)
    bb_gt = np.array(bb_gt, dtype=int)
    print(bbox3D)
    print(bb_gt)
    bboxInimg = bbox_in_img_for_slice(bboxInimg, bb_gt, line_thick, 1e3)
    bboxInimg = bboxInimg + mask3D * 2e3
    # bbox_in_img = np.hstack((bbox_in_img, img3D))
    show3Dslice(bboxInimg)
    # show3D(bboxInimg)

    img_for_3D = np.zeros([128, 128, 64], dtype=np.int)
    img_for_3D = bbox_in_img_for_3D(img_for_3D, bb_gt, line_thick, 100)
    img_for_3D = bbox_in_img_for_3D(img_for_3D, bbox3D, line_thick, 200)
    show3D(img_for_3D)