def create_data(n_samples=100 * 3, n_chans=30, n_trials=100, noise_dim=20, n_bad_chans=1, SNR=.1, show=False): """Create synthetic data. Parameters ---------- n_samples : int [description], by default 100*3 n_chans : int [description], by default 30 n_trials : int [description], by default 100 noise_dim : int Dimensionality of noise, by default 20 n_bad_chans : int [description], by default 1 Returns ------- data : ndarray, shape=(n_samples, n_chans, n_trials) source : ndarray, shape=(n_samples,) """ # source source = np.hstack(( np.zeros((n_samples // 3,)), np.sin(2 * np.pi * np.arange(n_samples // 3) / (n_samples / 3)).T, np.zeros((n_samples // 3,))))[np.newaxis].T s = source * np.random.randn(1, n_chans) # 300 * 30 s = s[:, :, np.newaxis] s = np.tile(s, (1, 1, 100)) # set first `n_bad_chans` to zero s[:, :n_bad_chans] = 0. # noise noise = np.dot( unfold(np.random.randn(n_samples, noise_dim, n_trials)), np.random.randn(noise_dim, n_chans)) noise = fold(noise, n_samples) # mix signal and noise data = noise / rms(noise.flatten()) + SNR * s / rms(s.flatten()) if show: f, ax = plt.subplots(3) ax[0].plot(source[:, 0], label='source') ax[1].plot(noise[:, 1, 0], label='noise') ax[2].plot(data[:, 1, 0], label='mixture') ax[0].legend() ax[1].legend() ax[2].legend() plt.show() return data, source
def test_dss0(n_bad_chans): """Test dss0. Find the linear combinations of multichannel data that maximize repeatability over trials. Data are time * channel * trials. Uses dss0(). `n_bad_chans` set the values of the first corresponding number of channels to zero. """ # create synthetic data n_samples = 100 * 3 n_chans = 30 n_trials = 100 noise_dim = 20 # dimensionality of noise # source source = np.hstack( (np.zeros((n_samples // 3, )), np.sin(2 * np.pi * np.arange(n_samples // 3) / (n_samples / 3)).T, np.zeros((n_samples // 3, ))))[np.newaxis].T s = source * np.random.randn(1, n_chans) # 300 * 30 s = s[:, :, np.newaxis] s = np.tile(s, (1, 1, 100)) # set first `n_bad_chans` to zero s[:, :n_bad_chans] = 0. # noise noise = np.dot(unfold(np.random.randn(n_samples, noise_dim, n_trials)), np.random.randn(noise_dim, n_chans)) noise = fold(noise, n_samples) # mix signal and noise SNR = 0.1 data = noise / rms(noise.flatten()) + SNR * s / rms(s.flatten()) # apply DSS to clean them c0, _ = tscov(data) c1, _ = tscov(np.mean(data, 2)) [todss, _, pwr0, pwr1] = dss.dss0(c0, c1) z = fold(np.dot(unfold(data), todss), epoch_size=n_samples) best_comp = np.mean(z[:, 0, :], -1) scale = np.ptp(best_comp) / np.ptp(source) assert_allclose(np.abs(best_comp), np.abs(np.squeeze(source)) * scale, atol=1e-6) # use abs as DSS component might be flipped
def create_data(n_times, n_chans=10, n_trials=20, freq=12, sfreq=250, noise_dim=8, SNR=.8, t0=100, show=False): """Create synthetic data. Returns ------- noisy_data: array, shape=(n_times, n_channels, n_trials) Simulated data with oscillatory component strting at t0. """ # source source = np.sin(2 * np.pi * freq * np.arange(n_times - t0) / sfreq)[None].T s = source * np.random.randn(1, n_chans) s = s[:, :, np.newaxis] s = np.tile(s, (1, 1, n_trials)) signal = np.zeros((n_times, n_chans, n_trials)) signal[t0:, :, :] = s # noise noise = np.dot(unfold(np.random.randn(n_times, noise_dim, n_trials)), np.random.randn(noise_dim, n_chans)) noise = fold(noise, n_times) # mix signal and noise signal = SNR * signal / rms(signal.flatten()) noise = noise / rms(noise.flatten()) noisy_data = signal + noise if show: f, ax = plt.subplots(3) ax[0].plot(signal[:, 0, 0], label='source') ax[1].plot(noise[:, 1, 0], label='noise') ax[2].plot(noisy_data[:, 1, 0], label='mixture') ax[0].legend() ax[1].legend() ax[2].legend() plt.show() return noisy_data, signal
def _stim_data(n_times, n_chans, n_trials, noise_dim, SNR=1, t0=100): """Create synthetic data.""" # source source = np.sin(2 * np.pi * np.linspace(0, .5, n_times - t0))[np.newaxis].T s = source * np.random.randn(1, n_chans) s = s[:, :, np.newaxis] s = np.tile(s, (1, 1, n_trials)) signal = np.zeros((n_times, n_chans, n_trials)) signal[t0:, :, :] = s # noise noise = np.dot(unfold(np.random.randn(n_times, noise_dim, n_trials)), np.random.randn(noise_dim, n_chans)) noise = fold(noise, n_times) # mix signal and noise signal = SNR * signal / rms(signal.flatten()) noise = noise / rms(noise.flatten()) noisy_data = signal + noise return noisy_data, signal
source = np.hstack( (np.zeros((n_samples // 3, )), np.sin(2 * np.pi * np.arange(n_samples // 3) / (n_samples / 3)).T, np.zeros((n_samples // 3, ))))[np.newaxis].T s = source * np.random.randn(1, n_chans) # 300 * 30 s = s[:, :, np.newaxis] s = np.tile(s, (1, 1, 100)) # Noise noise = np.dot(unfold(np.random.randn(n_samples, noise_dim, n_trials)), np.random.randn(noise_dim, n_chans)) noise = fold(noise, n_samples) # Mix signal and noise SNR = 0.1 data = noise / rms(noise.flatten()) + SNR * s / rms(s.flatten()) ############################################################################### # Apply DSS to clean them # ----------------------------------------------------------------------------- # Compute original and biased covariance matrices c0, _ = tscov(data) # In this case the biased covariance is simply the covariance of the mean over # trials c1, _ = tscov(np.mean(data, 2)) # Apply DSS [todss, _, pwr0, pwr1] = dss.dss0(c0, c1) z = fold(np.dot(unfold(data), todss), epoch_size=n_samples)
# source source = np.sin(2 * np.pi * target * np.arange(n_times - t0) / sfreq)[None].T s = source * np.random.randn(1, n_chans) s = s[:, :, np.newaxis] s = np.tile(s, (1, 1, n_trials)) signal = np.zeros((n_times, n_chans, n_trials)) signal[t0:, :, :] = s # noise noise = np.dot(unfold(np.random.randn(n_times, noise_dim, n_trials)), np.random.randn(noise_dim, n_chans)) noise = fold(noise, n_times) # mix signal and noise signal = SNR * signal / rms(signal.flatten()) noise = noise / rms(noise.flatten()) data = signal + noise # Plot f, ax = plt.subplots(3) ax[0].plot(signal[:, 0, 0], c='C0', label='source') ax[1].plot(noise[:, 1, 0], c='C1', label='noise') ax[2].plot(data[:, 1, 0], c='C2', label='mixture') ax[0].legend() ax[1].legend() ax[2].legend() ############################################################################### # Enhance oscillatory activity using RESS # -----------------------------------------------------------------------------