Exemplo n.º 1
0
    def test_multilevel_atom(self):
        resolution = 20
        ncav = 1.5
        Lcav = 1
        dpad = 1
        dpml = 1
        sz = Lcav + dpad + dpml

        cell_size = mp.Vector3(z=sz)
        dimensions = 1
        pml_layers = [mp.PML(dpml, side=mp.High)]

        omega_a = 40
        freq_21 = omega_a / (2 * math.pi)

        gamma_perp = 4
        gamma_21 = (2 * gamma_perp) / (2 * math.pi)

        theta = 1
        sigma_21 = 2 * theta * theta * omega_a

        rate_21 = 0.005
        N0 = 28
        Rp = 0.0051

        t1 = mp.Transition(1,
                           2,
                           pumping_rate=Rp,
                           frequency=freq_21,
                           gamma=gamma_21,
                           sigma_diag=mp.Vector3(sigma_21, sigma_21, sigma_21))
        t2 = mp.Transition(2, 1, transition_rate=rate_21)
        ml_atom = mp.MultilevelAtom(sigma=1,
                                    transitions=[t1, t2],
                                    initial_populations=[N0])
        two_level = mp.Medium(index=ncav, E_susceptibilities=[ml_atom])

        geometry = [
            mp.Block(center=mp.Vector3(z=(-0.5 * sz) + (0.5 * Lcav)),
                     size=mp.Vector3(mp.inf, mp.inf, Lcav),
                     material=two_level)
        ]

        sim = mp.Simulation(cell_size=cell_size,
                            resolution=resolution,
                            boundary_layers=pml_layers,
                            geometry=geometry,
                            dimensions=dimensions)

        def field_func(p):
            return 1 if p.z == (-0.5 * sz) + (0.5 * Lcav) else 0

        def check_field(sim):
            fp = sim.get_field_point(
                mp.Ex, mp.Vector3(z=(-0.5 * sz) + Lcav + (0.5 * dpad))).real
            self.assertAlmostEqual(fp, 1.8040684243391956)

        sim.init_sim()
        sim.fields.initialize_field(mp.Ex, field_func)
        sim.run(mp.at_end(check_field), until=7000)
Exemplo n.º 2
0
# Finally, note the lack of 4*pi in the above conversion that is written in many published SALT papers.
# This 4*pi comes from using Gaussian units, in which the displacement field, D = E + 4*pi*P, whereas
# in SI units, D = eps0*E + P, which is what MEEP uses.

# Gain medium pump and decay rates are specified in units of c/a.

rate_21 = 0.005  # non-radiative rate  (units of c/a)
N0 = 37  # initial population density of ground state
Rp = 0.0051  # pumping rate of ground to excited state
# so for example, these parameters have D_0 (SALT) = 0.0693.

# Make the actual medium in MEEP:
transitions = [
    mp.Transition(1,
                  2,
                  pumping_rate=Rp,
                  frequency=freq_21,
                  gamma=gamma_21,
                  sigma_diag=mp.Vector3(sigma_21, 0, 0)),
    mp.Transition(2, 1, transition_rate=rate_21)
]
ml_atom = mp.MultilevelAtom(sigma=1,
                            transitions=transitions,
                            initial_populations=[N0])
two_level = mp.Medium(index=ncav, E_susceptibilities=[ml_atom])

# Specify the cavity geometry:
geometry = [
    mp.Block(center=mp.Vector3(z=-0.5 * sz + 0.5 * Lcav),
             size=mp.Vector3(mp.inf, mp.inf, Lcav),
             material=two_level)
]