Exemplo n.º 1
0
def calc_params_l2_norm(model):
    """Calculate l2 norm of parameters """
    args = get_args()
    if not isinstance(model, list):
        model = [model]
    # Remove duplicate params.
    params_data = []
    for model_ in model:
        for param in model_.parameters():
            is_not_shared = param_is_not_shared(param)
            is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
            if is_not_shared and is_not_tp_duplicate:
                if args.bf16:
                    params_data.append(param.data.float())
                else:
                    params_data.append(param.data)
    # Calculate norm
    dummy_overflow_buf = torch.cuda.IntTensor([0])
    norm, _ = multi_tensor_applier(
        amp_C.multi_tensor_l2norm,
        dummy_overflow_buf,
        [params_data],
        False # no per-parameter norm
    )
    norm_2 = norm * norm
    # Sum across all model-parallel GPUs.
    torch.distributed.all_reduce(norm_2,
                                 op=torch.distributed.ReduceOp.SUM,
                                 group=mpu.get_model_parallel_group())
    return norm_2.item() ** 0.5
Exemplo n.º 2
0
def count_zeros_fp32(parameters):

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
    total_num_zeros = 0.0
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grad = param.grad.detach()
            num_zeros = grad.numel() - torch.count_nonzero(grad)
            total_num_zeros = num_zeros + total_num_zeros

    # Sum across all model-parallel GPUs.
    torch.distributed.all_reduce(total_num_zeros,
                                 op=torch.distributed.ReduceOp.SUM,
                                 group=mpu.get_model_parallel_group())
    total_num_zeros = total_num_zeros.item()

    return total_num_zeros
Exemplo n.º 3
0
def clip_grad_norm_fp32(parameters, max_norm, norm_type=2):
    """Clips gradient norm of an iterable of parameters whose gradients
       are in fp32.

    This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
    added functionality to handle model parallel parameters. Note that
    the gradients are modified in place.

    Arguments:
        parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
            single Tensor that will have gradients normalized
        max_norm (float or int): max norm of the gradients
        norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
            infinity norm.

    Returns:
        Total norm of the parameters (viewed as a single vector).
    """

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # Filter parameters based on:
    #   - grad should not be none
    #   - parameter should not be shared
    #   - should not be a replica due to tensor model parallelism
    grads = []
    grads_for_norm = []
    for param in parameters:
        grad_not_none = param.grad is not None
        is_not_shared = param_is_not_shared(param)
        is_not_tp_duplicate = param_is_not_tensor_parallel_duplicate(param)
        if grad_not_none:
            grad = param.grad.detach()
        if grad_not_none:
            # Make sure the grads are in fp32
            assert param.grad.type() == 'torch.cuda.FloatTensor'
            grads.append(grad)
        if grad_not_none and is_not_shared and is_not_tp_duplicate:
            grads_for_norm.append(grad)

    # Norm parameters.
    max_norm = float(max_norm)
    norm_type = float(norm_type)
    total_norm = 0.0

    # Calculate norm.
    if norm_type == inf:
        total_norm = max(grad.abs().max() for grad in grads_for_norm)
        total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
        # Take max across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm_cuda,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
        total_norm = total_norm_cuda[0].item()

    else:
        if norm_type == 2.0:
            dummy_overflow_buf = torch.cuda.IntTensor([0])
            # Use apex's multi-tensor applier for efficiency reasons.
            # Multi-tensor applier takes a function and a list of list
            # and performs the operation on that list all in one kernel.
            grad_norm, _ = multi_tensor_applier(
                amp_C.multi_tensor_l2norm,
                dummy_overflow_buf,
                [grads_for_norm],
                False # no per-parameter norm
            )
            # Since we will be summing across data parallel groups,
            # we need the pow(norm-type).
            total_norm = grad_norm ** norm_type

        else:
            for grad in grads_for_norm:
                grad_norm = torch.norm(grad, norm_type)
                total_norm += grad_norm ** norm_type

        # Sum across all model-parallel GPUs.
        torch.distributed.all_reduce(total_norm,
                                     op=torch.distributed.ReduceOp.SUM,
                                     group=mpu.get_model_parallel_group())
        total_norm = total_norm.item() ** (1.0 / norm_type)

    # Scale.
    clip_coeff = max_norm / (total_norm + 1.0e-6)
    if clip_coeff < 1.0:
        dummy_overflow_buf = torch.cuda.IntTensor([0])
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             dummy_overflow_buf,
                             [grads, grads],
                             clip_coeff)

    return total_norm