Exemplo n.º 1
0
 def forward(self, inps):
     x = F.matmul(inps[0], inps[1], self.param["transA"],
                  self.param["transB"])
     if self.param["alpha"] != 1.0:
         x = F.mul(x, self.param["alpha"])
     if len(inps) == 3:
         if self.param["beta"] != 1.0:
             x = F.add(x, F.mul(inps[2], self.param["beta"]))
         else:
             x = F.add(x, inps[2])
     return x
Exemplo n.º 2
0
def test_as_raw_tensor_from_int64():
    x = np.arange(6, dtype="int64").reshape(2, 3)
    xx = Tensor(x, dtype="float32", device="xpux")
    yy = F.add(xx, 1).numpy()
    assert xx.dtype == np.float32
    assert xx.device == "xpux"
    np.testing.assert_almost_equal(yy, x.astype("float32") + 1)
Exemplo n.º 3
0
def test_add_input():

    a = Tensor([1, 2])
    b = Tensor([3, 4])

    @trace(symbolic=True, capture_as_const=True)
    def fwd(a, b):
        return (a + b) * 2

    fwd(a, b)
    orig_model = io.BytesIO()
    fwd.dump(orig_model,
             arg_names=["a", "b"],
             output_names="o",
             optimize_for_inference=False)
    orig_model.seek(0)

    graph = Net.load(orig_model)
    inp_c = graph.make_input_node((2, ), np.int32, name="c")
    varo = graph.var_filter.name("o").as_unique()

    out = F.add(varo, inp_c)
    out.name = "o1"
    graph.remove_output(varo)
    graph.add_output(out)
    modified_model = io.BytesIO()

    graph.dump(modified_model)
    modified_model.seek(0)
    load_graph = GraphInference(modified_model)

    out = load_graph.run(a, b, a)
    np.testing.assert_equal(out["o1"], ((a + b) * 2 + a).numpy())
Exemplo n.º 4
0
def test_add_output():

    a = Tensor([1.0, 2.0])
    b = Tensor([3.0, 4.0])

    @trace(symbolic=True, capture_as_const=True)
    def fwd(a, b):
        return (a + b) * 2

    fwd(a, b)
    orig_model = io.BytesIO()
    fwd.dump(
        orig_model, arg_names=["a", "b"], output_names="o", optimize_for_inference=False
    )
    orig_model.seek(0)

    net = Net.load(orig_model)
    var_a = net.var_filter.name("a").as_unique()
    var_b = net.var_filter.name("b").as_unique()

    y = F.add(var_a, var_b)
    y = F.sigmoid(y)

    y.name = "o1"
    net.add_output(y)

    modified_model = io.BytesIO()
    net.dump(modified_model)
    modified_model.seek(0)

    g = GraphInference(modified_model)
    out = g.run(a.numpy(), b.numpy())

    np.testing.assert_equal(out["o"], ((a + b) * 2).numpy())
    np.testing.assert_equal(out["o1"], (F.sigmoid((a + b))).numpy())
Exemplo n.º 5
0
def test_replace_vars():
    g = mgb_graph.Graph()
    g.options.async_exec_level = 0b100
    device = "xpux"
    dtype = np.float32
    a = mgb_graph.InputNode(device=device, dtype=dtype, graph=g)
    const = g.make_const(1.234)
    a_plus_a = F.add(a.outputs[0], a.outputs[0])
    a_plus_a_mul_const = F.mul(a_plus_a, const)
    rst = F.add(a_plus_a_mul_const, a.outputs[0])
    (new, ) = cgtools.replace_vars([rst._node], {const._node: a_plus_a._node})
    out = mgb_graph.OutputNode(mgb_graph.VarNode(new))
    func = g.compile(out.outputs[0])
    func.execute()
    x = make_dev_tensor(5.0, device=device)
    a.set_value(x)
    res = out.get_value().numpy()
    np.testing.assert_equal(res, np.array([105.0]))
Exemplo n.º 6
0
def test_module_elemwise():
    def test_func(method, *inps):
        elemwise = Elemwise(method)
        outputs = elemwise(*inps)
        return outputs.numpy()

    x = np.random.rand(100).astype("float32")
    y = np.random.rand(100).astype("float32")
    x, y = tensor(x), tensor(y)
    np.testing.assert_almost_equal(test_func("H_SWISH", x),
                                   F.hswish(x).numpy(),
                                   decimal=6)
    np.testing.assert_almost_equal(test_func("ADD", x, y),
                                   F.add(x, y).numpy(),
                                   decimal=6)
Exemplo n.º 7
0
 def forward(self, inps):
     return F.add(inps[0], inps[1])
Exemplo n.º 8
0
import megengine as mge
import megengine.functional as F

A = mge.tensor([[2., 4., 2.],
                [2., 4., 2.]])
B = mge.tensor([[1., 2., 1.],
                [1., 2., 1.]])

print(A + B)
print(A - B)
print(A * B)
print(A / B)

print(F.add(A, B))
print(F.sub(A, B))
print(F.mul(A, B))
print(F.div(A, B))

A = mge.tensor([[1., 2., 3.],
                [4., 5., 6.]])

print(A[1, :2])

A = mge.tensor([[1., 2., 3.],
                [4., 5., 6.]])

print(A.shape)
A = A.reshape(3, 2)
print(A.shape)

x = mge.tensor([[1., 3., 5.],