Exemplo n.º 1
0
def get_dist_restraints(filename, s, scaler):
    dists = []
    rest_group = []
    lines = open(filename).read().splitlines()
    lines = [line.strip() for line in lines]
    for line in lines:
        if not line:
            dists.append(s.restraints.create_restraint_group(rest_group, 1))
            rest_group = []
        else:
            cols = line.split()
            i = int(cols[0])
            name_i = cols[1]
            j = int(cols[2])
            name_j = cols[3]
            dist = float(cols[4]) / 10.

            rest = s.restraints.create_restraint('distance',
                                                 scaler,
                                                 LinearRamp(0, 100, 0, 1),
                                                 r1=0.0,
                                                 r2=0.0,
                                                 r3=dist,
                                                 r4=dist + 0.2,
                                                 k=250,
                                                 atom_1_res_index=i,
                                                 atom_2_res_index=j,
                                                 atom_1_name=name_i,
                                                 atom_2_name=name_j)
            rest_group.append(rest)
    return dists
Exemplo n.º 2
0
def make_pairON(g,
                s,
                i,
                j,
                scaler,
                CO=True,
                doing_eco=False,
                eco_factor=0.0,
                eco_constant=1.0,
                eco_linear=0.0):
    contact_order = abs(i - j)
    if CO:
        tmp_scaler = scaler(contact_order, 'strand')
    else:
        tmp_scaler = scaler
    g.append(
        s.restraints.create_restraint('distance',
                                      tmp_scaler,
                                      LinearRamp(0, 100, 0, 1),
                                      r1=0.0,
                                      r2=0.0,
                                      r3=0.35,
                                      r4=0.50,
                                      k=250.0,
                                      doing_eco=doing_eco,
                                      eco_factor=eco_factor,
                                      eco_constant=eco_constant,
                                      eco_linear=eco_linear,
                                      atom_1_res_index=i,
                                      atom_1_name='O',
                                      atom_2_res_index=j,
                                      atom_2_name='N'))
Exemplo n.º 3
0
def get_knob_restraints(filename, s, scaler):
    dists = []
    lines = open(filename).read().splitlines()
    lines = [line.strip() for line in lines]
    high = 0
    total = 0
    for line in lines:
            cols = line.split()
            i = int(cols[0])
            name_i = cols[2]
            j = int(cols[3])
            name_j = cols[5]
            dist = float(cols[6]) / 10.
            sd = float(cols[7]) / 10.
            accuracy = float(cols[8])

            if name_i not in ["CA","CB"]:
                continue
            if name_j not in ["CA","CB"]:
                continue
            if abs(i-j) < 6:
                continue
            if accuracy > 0.5:
                high = high + 1
                total = total + 1

            rest = s.restraints.create_restraint('distance', scaler,LinearRamp(0,100,0,1),
                                                 r1=max(0,dist-sd-0.2), r2=max(0,dist-sd), r3=dist+sd, r4=dist+sd+0.2, k=250,
                                                 atom_1_res_index=i, atom_2_res_index=j,
                                                 atom_1_name=name_i, atom_2_name=name_j)
            #collections are parallel; groups are in one gpu thread
            dists.append(s.restraints.create_restraint_group([rest], 1))
    return dists,float(high)/float(total)*0.95
Exemplo n.º 4
0
def make_pairON(g,s,i,j,scaler,CO=True):
    contact_order = abs(i-j)
    if CO:
        tmp_scaler = scaler(contact_order,'strand')
    else:
        tmp_scaler = scaler
    g.append(s.restraints.create_restraint('distance', tmp_scaler,LinearRamp(0,100,0,1), r1=0.0, r2=0.0, r3=0.35, r4=0.50, k=250.0,
            atom_1_res_index=i, atom_1_name='O', atom_2_res_index=j, atom_2_name='N'))
Exemplo n.º 5
0
def setup_system():
    # load the sequence
    sequence = parse.get_sequence_from_AA1(filename='sequence.dat')
    n_res = len(sequence.split())

    # build the system
    p = system.ProteinMoleculeFromSequence(sequence)
    b = system.SystemBuilder()
    s = b.build_system_from_molecules([p])
    s.temperature_scaler = system.GeometricTemperatureScaler(
        0, 0.4, 300., 550.)

    #
    # Secondary Structure
    #
    ss_scaler = s.restraints.create_scaler('constant')
    ss_rests = parse.get_secondary_structure_restraints(
        filename='ss.dat',
        system=s,
        scaler=ss_scaler,
        torsion_force_constant=2.5,
        distance_force_constant=2.5)
    n_ss_keep = int(len(ss_rests) * 0.70)  #We enforce 70% of restrains
    s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep)

    #
    # Confinement Restraints
    #
    conf_scaler = s.restraints.create_scaler('constant')
    confinement_rests = []
    confinement_dist = (16.9 * np.log(s.residue_numbers[-1]) - 15.8) / 28.
    for index in range(n_res):
        rest = s.restraints.create_restraint('confine',
                                             conf_scaler,
                                             LinearRamp(0, 100, 0, 1),
                                             res_index=index + 1,
                                             atom_name='CA',
                                             radius=confinement_dist,
                                             force_const=250.0)
        confinement_rests.append(rest)
    s.restraints.add_as_always_active_list(confinement_rests)

    #
    # Distance Restraints
    #
    # High reliability
    #
    dist_scaler = s.restraints.create_scaler('nonlinear',
                                             alpha_min=0.4,
                                             alpha_max=1.0,
                                             factor=4.0)
    #contact80_dist = get_dist_restraints('target_contacts_over_80.dat', s, dist_scaler)
    #n_high_keep = int(0.80 * len(contact80_dist))
    #s.restraints.add_selectively_active_collection(contact80_dist, n_high_keep)

    #
    # Long
    #
    #contact60_dist = get_dist_restraints('target_contacts_over_60.dat', s, dist_scaler)
    #n_high_keep = int(0.60 * len(contact60_dist))
    #s.restraints.add_selectively_active_collection(contact60_dist, n_high_keep)

    #
    # Heuristic Restraints
    #
    subset = np.array(range(n_res)) + 1

    #
    # Hydrophobic
    #
    create_hydrophobes(s, scaler=dist_scaler, group_1=subset)

    #
    # Strand Pairing
    #
    sse, active = make_ss_groups(subset=subset)
    generate_strand_pairs(s, sse, active, subset=subset)

    # create the options
    options = system.RunOptions()
    options.implicit_solvent_model = 'gbNeck2'
    options.use_big_timestep = True
    options.cutoff = 1.8

    options.use_amap = True
    options.amap_beta_bias = 1.0
    options.timesteps = 14286
    options.minimize_steps = 20000

    # create a store
    store = vault.DataStore(s.n_atoms,
                            N_REPLICAS,
                            s.get_pdb_writer(),
                            block_size=BLOCK_SIZE)
    store.initialize(mode='w')
    store.save_system(s)
    store.save_run_options(options)

    # create and store the remd_runner
    l = ladder.NearestNeighborLadder(n_trials=48 * 48)
    policy = adaptor.AdaptationPolicy(2.0, 50, 50)
    a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS,
                                       adaptation_policy=policy)

    remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS,
                                                            max_steps=N_STEPS,
                                                            ladder=l,
                                                            adaptor=a)
    store.save_remd_runner(remd_runner)

    # create and store the communicator
    c = comm.MPICommunicator(s.n_atoms, N_REPLICAS)
    store.save_communicator(c)

    # create and save the initial states
    states = [gen_state(s, i) for i in range(N_REPLICAS)]
    store.save_states(states, 0)

    # save data_store
    store.save_data_store()

    return s.n_atoms
Exemplo n.º 6
0
def setup_system():
    # create the system starting from coordinates in template.pdb
    templates = glob.glob('%s-sep.pdb' % (sys.argv[1]))
    p = system.ProteinMoleculeFromPdbFile(templates[0])
    b = system.SystemBuilder(forcefield="ff14sbside")
    # load non-standard AA force field params, bonds
    s = b.build_system_from_molecules([p])

    # Create temperature ladder
    s.temperature_scaler = system.GeometricTemperatureScaler(
        0.0, 0.5, 300., 500.)

    # Keep protein dimer conformation fairly constant
    dist_scaler = s.restraints.create_scaler('nonlinear',
                                             alpha_min=0.4,
                                             alpha_max=1.0,
                                             factor=4.0)

    const_scaler = s.restraints.create_scaler('constant')
    dist = keep_fixed_distance('%s-contacts.dat' % (sys.argv[1]),
                               s,
                               scaler=const_scaler)
    s.restraints.add_selectively_active_collection(dist, int(len(dist)))

    # Keep DNA hbonds
    #Read sequence file
    sequenceDNA = readSeq('%s-seq.dat' % (sys.argv[1]))
    #Generate hbondsDNA.dat
    make_hbond_restraint_file(sequenceDNA, 0)
    dist_scaler3 = s.restraints.create_scaler('nonlinear',
                                              alpha_min=0.9,
                                              alpha_max=1.0,
                                              factor=4.0)
    dist = keep_fixed_distance('hbondsDNA.dat', s, scaler=const_scaler)
    s.restraints.add_selectively_active_collection(dist, int(len(dist)))

    # Keep DNA close to starting conformation
    rest = make_cartesian_collections(s,
                                      const_scaler,
                                      range(1, 43),
                                      atoms=[
                                          "C1'", "C2", "C2'", "C3'", "C4",
                                          "C4'", "C5", "C5'", "C6", "C7", "C8",
                                          "DA3", "N1", "N2", "N3", "N4", "N6",
                                          "N7", "N9", "O2", "O3'", "O4", "O4'",
                                          "O5'", "O6", "OP1", "OP2", "P"
                                      ])
    # rest = make_cartesian_collections(s, const_scaler, range(1,16),atoms=["C1'", "C2", "C2'", "C3'", "C4", "C4'", "C5", "C5'", "C6", "N1", "N3", "O3'", "O4'"])
    #These are the common atoms to all DNA bases including ends:
    #C1' C2 C2' C3' C4 C4' C5 C5' C6 N1 N3 O3' O4' O5'
    s.restraints.add_as_always_active_list(rest)

    # Create Contacts between protein and DNA
    dom1 = get_dist_restraints('%s-DNA-contacts.dat' % (sys.argv[1]),
                               s,
                               scaler=dist_scaler)
    s.restraints.add_selectively_active_collection(dom1, int(len(dom1)))

    # Find Glycines and Restrain peptide within reasonable distance from DNA
    names = np.array(s.atom_names)
    resid = np.array(s.residue_numbers)
    # resnames = np.array(s.residue_names)
    select = names == 'CB'
    non_gly = resid[select]

    # scaler3 = s.restraints.create_scaler('nonlinear',alpha_min=0.7,alpha_max=1.0, factor=4.0, strength_at_alpha_min=1.0, strength_at_alpha_max=0.5)

    # conf_rest = []
    # group1 = []
    # group2 = []
    # for i in range(2,21):
    #     group1.append( (i,"O5'") )
    # for i in range(22,41):
    #     group1.append( (i,"O5'") )
    # for j in non_gly:
    #     group2.append( (j,"CB") )
    # positioner = s.restraints.create_scaler('linear_positioner',alpha_min=0.7, alpha_max=1.0, pos_min=10., pos_max=15.)
    # conf_rest.append(s.restraints.create_restraint('com', scaler3,ramp=LinearRamp(0,100,0,1),
    #                                                    force_const=75.0,group1=group1,group2=group2,
    #                                                    distance =positioner,weights1=None, weights2=None, dims='xyz'))
    # s.restraints.add_as_always_active_list(conf_rest)

    dist_scaler2 = s.restraints.create_scaler('nonlinear',
                                              alpha_min=0.7,
                                              alpha_max=1.0,
                                              factor=4.0)
    res_groups = get_distance_rests('%s-res_groups.dat' % (sys.argv[1]),
                                    s,
                                    scaler=dist_scaler2)
    s.restraints.add_selectively_active_collection(res_groups,
                                                   int(len(res_groups) - 10))

    #
    # Secondary Structure
    #
    ss_scaler = s.restraints.create_scaler('constant')
    ss_rests = parse.get_secondary_structure_restraints(
        filename='%s-ss.dat' % (sys.argv[1]),
        system=s,
        ramp=LinearRamp(0, 100, 0, 1),
        scaler=ss_scaler,
        torsion_force_constant=2.5,
        distance_force_constant=2.5)
    n_ss_keep = int(len(ss_rests) * 0.96)
    s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep)

    # create the options
    options = system.RunOptions()
    options.implicit_solvent_model = 'gbNeck2'
    options.remove_com = False
    options.use_big_timestep = False  # MD timestep (3.3 fs)
    options.use_bigger_timestep = True  # MD timestep (4.0 fs)
    options.cutoff = 1.8  # cutoff in nm
    options.soluteDielectric = 1.
    #options.implicitSolventSaltConc = None

    options.use_amap = False  # correction to FF12SB
    options.amap_beta_bias = 1.0
    options.timesteps = 11111  # number of MD steps per exchange
    options.minimize_steps = 20000  # init minimization steps

    # create a store
    store = vault.DataStore(s.n_atoms,
                            N_REPLICAS,
                            s.get_pdb_writer(),
                            block_size=BLOCK_SIZE)
    store.initialize(mode='w')
    store.save_system(s)
    store.save_run_options(options)

    # create and store the remd_runner, sets up replica exchange details
    l = ladder.NearestNeighborLadder(n_trials=48)
    policy = adaptor.AdaptationPolicy(2.0, 50, 50)
    a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS,
                                       adaptation_policy=policy)
    remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS,
                                                            max_steps=N_STEPS,
                                                            ladder=l,
                                                            adaptor=a)
    store.save_remd_runner(remd_runner)

    # create and store the communicator
    c = comm.MPICommunicator(s.n_atoms, N_REPLICAS)
    store.save_communicator(c)

    # create and save the initial states
    # create and save the initial states, initialize each replica with a different template
    states = [gen_state_templates(i, templates) for i in range(N_REPLICAS)]
    store.save_states(states, 0)

    # save data_store
    store.save_data_store()

    return s.n_atoms
Exemplo n.º 7
0
def setup_system():

    # ECO settings
    #eco_cutoff = 0.8 # the distance (in nm) that qualifies as a connection in the graph
    eco_cutoff = 1.0  # the distance (in nm) that qualifies as a connection in the graph
    doing_eco_hydrophobe = True
    doing_eco_hbond = True
    doing_eco_2ndary = False
    doing_eco_strand_pairing = True
    doing_eco_knob = False
    doing_eco_evolutionary = False
    #eco_factor = 4.0 # the factor by which we multiply the eco energy adjustment
    eco_factor = 1  # the factor by which we multiply the eco energy adjustment
    eco_constant = 0.0  # In theory, these could be changed for any restraint
    eco_linear = 0.0

    # load the sequence
    sequence = parse.get_sequence_from_AA1(filename='sequence.dat')
    n_res = len(sequence.split())

    # build the system
    p = system.ProteinMoleculeFromSequence(sequence)
    b = system.SystemBuilder(forcefield="ff14sbside")
    s = b.build_system_from_molecules([p])
    s.temperature_scaler = system.GeometricTemperatureScaler(
        0, 0.6, 300., 450.)

    #
    # Secondary Structure
    #
    ss_scaler = s.restraints.create_scaler('constant')
    ss_rests = parse.get_secondary_structure_restraints(
        filename='ss.dat',
        system=s,
        ramp=LinearRamp(0, 100, 0, 1),
        scaler=ss_scaler,
        torsion_force_constant=2.5,
        distance_force_constant=2.5,
        doing_eco=doing_eco_2ndary,
        eco_factor=eco_factor,
        eco_constant=eco_constant,
        eco_linear=eco_linear)
    n_ss_keep = int(len(ss_rests) * 0.70)  #We enforce 70% of restrains
    s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep)

    #
    # Confinement Restraints
    #
    #conf_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0,strength_at_alpha_min=0.0, strength_at_alpha_max=1.0)
    #confinement_rests = []
    #confinement_dist = (16.9*np.log(s.residue_numbers[-1])-15.8)/28.*1.2
    #for index in range(n_res):
    #    rest = s.restraints.create_restraint('confine', conf_scaler, LinearRamp(0,100,0,1),res_index=index+1, atom_name='CA', radius=confinement_dist, force_const=250.0)
    #    confinement_rests.append(rest)
    #s.restraints.add_as_always_active_list(confinement_rests)

    #
    # Distance Restraints
    #
    dist_scaler = s.restraints.create_scaler('nonlinear',
                                             alpha_min=0.4,
                                             alpha_max=1.0,
                                             factor=4.0)

    # High reliability
    #
    #
    # Create Plateau kind of scalers
    #
    low_2 = make_CO_scaler(system=s,
                           scaler_type='plateaunonlinear',
                           alpha_min=0.70,
                           alpha_one=0.85,
                           alpha_two=0.85,
                           alpha_max=1.0,
                           strength_at_alpha_min=1.0,
                           strength_at_alpha_max=0.0)
    low_4 = make_CO_scaler(system=s,
                           scaler_type='plateaunonlinear',
                           alpha_min=0.55,
                           alpha_one=0.70,
                           alpha_two=0.70,
                           alpha_max=0.85,
                           strength_at_alpha_min=1.0,
                           strength_at_alpha_max=0.0)
    low_6 = s.restraints.create_scaler('plateaunonlinear',
                                       alpha_min=0.40,
                                       alpha_one=0.55,
                                       alpha_two=0.55,
                                       alpha_max=0.7,
                                       factor=4.0,
                                       strength_at_alpha_min=1.0,
                                       strength_at_alpha_max=0.0)
    low_8 = s.restraints.create_scaler('nonlinear',
                                       alpha_min=0.40,
                                       alpha_max=0.55,
                                       factor=4.0)
    #
    # Heuristic Restraints
    #
    subset = np.array(range(n_res)) + 1

    #
    # Hydrophobic
    #

    create_hydrophobes(s,
                       ContactsPerHydroph=1.2,
                       scaler=dist_scaler,
                       group_1=subset,
                       CO=False,
                       doing_eco=doing_eco_hydrophobe,
                       eco_factor=eco_factor,
                       eco_constant=eco_constant,
                       eco_linear=eco_linear)

    #create_hydrophobes(s,ContactsPerHydroph=1.2/4.,scaler=low_2,group_1=subset,CO=True)
    #create_hydrophobes(s,ContactsPerHydroph=1.2/2.,scaler=low_4,group_1=subset,CO=True)
    #create_hydrophobes(s,ContactsPerHydroph=1.2*3/4.,scaler=low_6,group_1=subset,CO=False)
    #create_hydrophobes(s,ContactsPerHydroph=1.2,scaler=low_8,group_1=subset,CO=False)

    #
    # HBonds
    #

    create_HydrogenBond(s,
                        HBPerResidue=0.10,
                        scaler=dist_scaler,
                        group_1=subset,
                        CO=False,
                        doing_eco=doing_eco_hbond,
                        eco_factor=eco_factor,
                        eco_constant=eco_constant,
                        eco_linear=eco_linear)

    #create_HydrogenBond(s,HBPerResidue=0.10/4.,scaler=low_2,group_1=subset,CO=True)
    #create_HydrogenBond(s,HBPerResidue=0.10/2.,scaler=low_4,group_1=subset,CO=True)
    #create_HydrogenBond(s,HBPerResidue=0.10*3/4.,scaler=low_6,group_1=subset,CO=False)
    #create_HydrogenBond(s,HBPerResidue=0.10,scaler=low_8,group_1=subset,CO=False)

    #
    # Strand Pairing
    #
    sse, active = make_ss_groups(subset=subset)
    try:

        generate_strand_pairs(s,
                              sse,
                              float(active),
                              subset=subset,
                              scaler=dist_scaler,
                              CO=False,
                              doing_eco=doing_eco_strand_pairing,
                              eco_factor=eco_factor,
                              eco_constant=eco_constant,
                              eco_linear=eco_linear)

        #generate_strand_pairs(s,sse,float(active)/4.,subset=subset,scaler=low_2,CO=True)
        #generate_strand_pairs(s,sse,float(active)/2.,subset=subset,scaler=low_4,CO=True)
        #generate_strand_pairs(s,sse,float(active)*3/4.,subset=subset,scaler=low_6,CO=False)
        #generate_strand_pairs(s,sse,float(active),subset=subset,scaler=low_8,CO=False)
    except:
        print "Not using Strand Pairing Heuristic"
        pass

        #
        # Evolutionary restraints
        #
    try:
        create_Evolution(s,
                         scaler=dist_scaler,
                         fname='evolution_contacts.dat',
                         doing_eco=doing_eco_evolutionary,
                         eco_factor=eco_factor,
                         eco_constant=eco_constant,
                         eco_linear=eco_linear)
    except:
        print "Not using Evolutionary restraints"
        pass

    #
    # Distance Restraints
    #
    #
    # Knob restraints
    #
    try:
        knobs, knob_accuracy = get_knob_restraints('Knob.data',
                                                   s,
                                                   scaler=dist_scaler,
                                                   doing_eco=doing_eco_knob,
                                                   eco_factor=eco_factor,
                                                   eco_constant=eco_constant,
                                                   eco_linear=eco_linear)
        n_knobs = int(len(knobs) * knob_accuracy)
        s.restraints.add_selectively_active_collection(knobs, n_knobs)
    except:
        print "Not using Knob-Socket predictions"
        pass

    # setup mcmc at startup
    movers = []
    n_atoms = s.n_atoms
    for i in range(1, n_res + 1):
        n = s.index_of_atom(i, 'N') - 1
        ca = s.index_of_atom(i, 'CA') - 1
        c = s.index_of_atom(i, 'C') - 1

        mover = mc.DoubleTorsionMover(n, ca, list(range(ca, n_atoms)), ca, c,
                                      list(range(c, n_atoms)))

        movers.append((mover, 1))

    sched = mc.MonteCarloScheduler(movers, n_res * 60)

    # create the options
    options = system.RunOptions()
    options.implicit_solvent_model = 'gbNeck2'
    options.use_big_timestep = False
    options.use_bigger_timestep = True
    options.cutoff = 1.8
    #options.eco_cutoff = eco_cutoff
    # set eco_output very high so that log file does not print
    options.eco_params = {
        'eco_cutoff': 1.0,
        'eco_output_freq': 10000000,
        'print_avg_eco': False,
        'print_eco_value_array': False,
    }

    options.use_amap = False
    options.amap_beta_bias = 1.0
    options.timesteps = 11111
    options.minimize_steps = 20000
    options.min_mc = sched
    options.make_alpha_carbon_list(s.atom_names)
    print "alpha_carbon_indeces:", options.alpha_carbon_indeces

    # create a store
    store = vault.DataStore(s.n_atoms,
                            N_REPLICAS,
                            s.get_pdb_writer(),
                            block_size=BLOCK_SIZE)
    store.initialize(mode='w')
    store.save_system(s)
    store.save_run_options(options)

    # create and store the remd_runner
    l = ladder.NearestNeighborLadder(n_trials=48 * 48)
    policy = adaptor.AdaptationPolicy(2.0, 50, 50)
    a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS,
                                       adaptation_policy=policy)

    remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS,
                                                            max_steps=N_STEPS,
                                                            ladder=l,
                                                            adaptor=a)
    store.save_remd_runner(remd_runner)

    # create and store the communicator
    c = comm.MPICommunicator(s.n_atoms, N_REPLICAS)
    store.save_communicator(c)

    # create and save the initial states
    states = [gen_state(s, i) for i in range(N_REPLICAS)]
    store.save_states(states, 0)

    # save data_store
    store.save_data_store()

    return s.n_atoms
Exemplo n.º 8
0
def create_HydrogenBond(s,
                        HBPerResidue=0.10,
                        scaler=None,
                        group_1=np.array([]),
                        group_2=np.array([]),
                        CO=True,
                        doing_eco=False,
                        eco_factor=0.0,
                        eco_constant=1.0,
                        eco_linear=0.0):
    all_donor = ['N']
    all_acceptor = ['O']
    acceptors = {
        "SER": ['OG'],
        "THR": ['OG1'],
        "CYS": ['SG'],
        "TYR": ['OH'],
        "ASN": ['OD1', 'ND2'],
        "GLN": ['OE1', 'NE2'],
        "ASP": ['OD1', 'OD2'],
        "GLU": ['OE1', 'OE2'],
        "ARG": ['NE', 'NH1', 'NH2'],
        "HIE": ['ND1', 'NE2']
    }
    donors = {
        "SER": ['OG'],
        "THR": ['OG1'],
        "CYS": ['SG'],
        "TYR": ['OH'],
        "ASN": ['ND2'],
        "GLN": ['NE2'],
        "LYS": ['NZ'],
        "ARG": ['NE', 'NH1', 'NH2'],
        "HIE": ['NE2'],
        "LYS": ['NZ']
    }

    #Groups should be 1 centered
    n_res = s.residue_numbers[-1]
    group_1 = group_1 if group_1.size else np.array(range(n_res)) + 1
    group_2 = group_2 if group_2.size else np.array(range(n_res)) + 1
    scaler = scaler if scaler else s.restraints.create_scaler(
        'nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0)

    #Get a list of names and residue numbers, if just use names might skip some residues that are two
    #times in a row
    #make list 1 centered
    sequence = [(i, j) for i, j in zip(s.residue_numbers, s.residue_names)]
    sequence = sorted(set(sequence))
    sequence = dict(sequence)

    pairs = []
    HB_restraints = []
    for i in group_1:
        for j in group_2:

            # don't put the same pair in more than once
            if ((i, j) in pairs) or ((j, i) in pairs):
                continue

            if (i == j):
                continue
            #Alpha helices are 1-4, exclude them from this since they have the ss heuristic
            if (abs(i - j) < 5):
                continue
            if (abs(i - j) > 10):
                continue
            pairs.append((i, j))

            if CO:
                tmp_scaler = scaler(abs(i - j), 'Hbond')
            else:
                tmp_scaler = scaler

            local_contact = []
            #i as donor
            atoms_i = []
            atoms_i.extend(all_donor)
            try:  #some residues do not have donors
                atoms_i.extend(donors[sequence[i]])
            except:
                pass
            #j as acceptor
            atoms_j = []
            atoms_j.extend(all_acceptor)
            try:  #some residues do not have donors
                atoms_j.extend(acceptors[sequence[j]])
            except:
                pass

            #print "DONORS: ",i,sequence[i],atoms_i
            #print "ACCEPTORS: ",j,sequence[j],atoms_j

            for a_i in atoms_i:
                for a_j in atoms_j:
                    local_contact.append(
                        s.restraints.create_restraint(
                            'distance',
                            tmp_scaler,
                            LinearRamp(0, 100, 0, 1),
                            r1=0.0,
                            r2=0.0,
                            r3=0.50,
                            r4=0.65,
                            k=250.0,
                            doing_eco=doing_eco,
                            eco_factor=eco_factor,
                            eco_constant=eco_constant,
                            eco_linear=eco_linear,
                            atom_1_res_index=i,
                            atom_1_name=a_i,
                            atom_2_res_index=j,
                            atom_2_name=a_j))

            #j as donor
            atoms_j = []
            atoms_j.extend(all_donor)
            try:  #some residues do not have donors
                atoms_i.extend(donors[sequence[j]])
            except:
                pass
            #i as acceptor
            atoms_i = []
            atoms_i.extend(all_acceptor)
            try:  #some residues do not have donors
                atoms_j.extend(acceptors[sequence[j]])
            except:
                pass
            for a_i in atoms_i:
                for a_j in atoms_j:
                    local_contact.append(
                        s.restraints.create_restraint(
                            'distance',
                            tmp_scaler,
                            LinearRamp(0, 100, 0, 1),
                            r1=0.0,
                            r2=0.0,
                            r3=0.50,
                            r4=0.65,
                            k=250.0,
                            doing_eco=doing_eco,
                            eco_factor=eco_factor,
                            eco_constant=eco_constant,
                            eco_linear=eco_linear,
                            atom_1_res_index=i,
                            atom_1_name=a_i,
                            atom_2_res_index=j,
                            atom_2_name=a_j))

            HB_restraints.append(
                s.restraints.create_restraint_group(local_contact, 1))
    all_rest = len(HB_restraints)
    active = int(HBPerResidue * len(group_1))
    print "Hydrogen bond:"
    print active, len(group_1), all_rest
    s.restraints.add_selectively_active_collection(HB_restraints, active)
Exemplo n.º 9
0
def create_hydrophobes(s,
                       ContactsPerHydroph=1.3,
                       scaler=None,
                       group_1=np.array([]),
                       group_2=np.array([]),
                       CO=True,
                       doing_eco=False,
                       eco_factor=0.0,
                       eco_constant=1.0,
                       eco_linear=0.0):
    atoms = {
        "ALA": ['CA', 'CB'],
        "VAL": ['CA', 'CB', 'CG1', 'CG2'],
        "LEU": ['CA', 'CB', 'CG', 'CD1', 'CD2'],
        "ILE": ['CA', 'CB', 'CG1', 'CG2', 'CD1'],
        "PHE": ['CA', 'CB', 'CG', 'CD1', 'CE1', 'CZ', 'CE2', 'CD2'],
        "TRP": [
            'CA', 'CB', 'CG', 'CD1', 'NE1', 'CE2', 'CZ2', 'CH2', 'CZ3', 'CE3',
            'CD2'
        ],
        "MET": ['CA', 'CB', 'CG', 'SD', 'CE'],
        "PRO": ['CD', 'CG', 'CB', 'CA']
    }
    #Groups should be 1 centered
    n_res = s.residue_numbers[-1]
    group_1 = group_1 if group_1.size else np.array(range(n_res)) + 1
    group_2 = group_2 if group_2.size else np.array(range(n_res)) + 1
    scaler = scaler if scaler else s.restraints.create_scaler(
        'nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0)

    #Get a list of names and residue numbers, if just use names might skip some residues that are two
    #times in a row
    #make list 1 centered
    sequence = [(i, j) for i, j in zip(s.residue_numbers, s.residue_names)]
    sequence = sorted(set(sequence))
    sequence = dict(sequence)

    print sequence
    print hydrophobes_res
    #Get list of groups with only residues that are hydrophobs
    group_1 = [res for res in group_1 if (sequence[res] in hydrophobes_res)]
    group_2 = [res for res in group_2 if (sequence[res] in hydrophobes_res)]

    pairs = []
    hydroph_restraints = []
    for i in group_1:
        for j in group_2:

            # don't put the same pair in more than once
            if ((i, j) in pairs) or ((j, i) in pairs):
                continue

            if (i == j):
                continue

            if (abs(i - j) < 7):
                continue
            pairs.append((i, j))

            atoms_i = atoms[sequence[i]]
            atoms_j = atoms[sequence[j]]

            local_contact = []
            for a_i in atoms_i:
                for a_j in atoms_j:
                    if CO:
                        print i, j, a_i, a_j
                        tmp_scaler = scaler(abs(i - j), 'hydrophobic')
                    else:
                        tmp_scaler = scaler
                    local_contact.append(
                        s.restraints.create_restraint(
                            'distance',
                            tmp_scaler,
                            LinearRamp(0, 100, 0, 1),
                            r1=0.0,
                            r2=0.0,
                            r3=0.50,
                            r4=0.70,
                            k=250.0,
                            doing_eco=doing_eco,
                            eco_factor=eco_factor,
                            eco_constant=eco_constant,
                            eco_linear=eco_linear,
                            atom_1_res_index=i,
                            atom_1_name=a_i,
                            atom_2_res_index=j,
                            atom_2_name=a_j))

            hydroph_restraints.append(
                s.restraints.create_restraint_group(local_contact, 1))
            print 'hydroph:', i, j
    all_rest = len(hydroph_restraints)
    active = int(ContactsPerHydroph * len(group_1))
    print "Hydrophobic:"
    print active, len(group_1), all_rest
    s.restraints.add_selectively_active_collection(hydroph_restraints, active)
Exemplo n.º 10
0
def create_Evolution(s,
                     accuracy=0.5,
                     scaler=None,
                     fname='contacts.dat',
                     doing_eco=False,
                     eco_factor=0.0,
                     eco_constant=1.0,
                     eco_linear=0.0):
    scaler = scaler if scaler else s.restraints.create_scaler(
        'nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0)
    Evolution_restraints = []
    #Heavy atoms for each residue
    atoms = {
        "ALA": ['N', 'C', 'O', 'CA', 'CB'],
        "VAL": ['N', 'C', 'O', 'CA', 'CB', 'CG1', 'CG2'],
        "LEU": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'CD1', 'CD2'],
        "ILE": ['N', 'C', 'O', 'CA', 'CB', 'CG1', 'CG2', 'CD1'],
        "PHE":
        ['N', 'C', 'O', 'CA', 'CB', 'CG', 'CD1', 'CE1', 'CZ', 'CE2', 'CD2'],
        "TRP": [
            'N', 'C', 'O', 'CA', 'CB', 'CG', 'CD1', 'NE1', 'CE2', 'CZ2', 'CH2',
            'CZ3', 'CE3', 'CD2'
        ],
        "MET": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'SD', 'CE'],
        "PRO": ['N', 'C', 'O', 'CD', 'CG', 'CB', 'CA'],
        "ASP": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'OD1', 'OD2'],
        "GLU": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'CD', 'OE1', 'OE2'],
        "LYS": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'CD', 'CE', 'NZ'],
        "ARG":
        ['N', 'C', 'O', 'CA', 'CB', 'CG', 'CD', 'NE', 'CZ', 'NH1', 'NH2'],
        "HIS": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'ND1', 'CE1', 'NE2', 'CD2'],
        "HID": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'ND1', 'CE1', 'NE2', 'CD2'],
        "HIE": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'ND1', 'CE1', 'NE2', 'CD2'],
        "HIP": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'ND1', 'CE1', 'NE2', 'CD2'],
        "GLY": ['N', 'C', 'O', 'CA'],
        "SER": ['N', 'C', 'O', 'CA', 'CB', 'OG'],
        "THR": ['N', 'C', 'O', 'CA', 'CB', 'CG2', 'OG1'],
        "CYS": ['N', 'C', 'O', 'CA', 'CB', 'SG'],
        "CYX": ['N', 'C', 'O', 'CA', 'CB', 'SG'],
        "TYR": [
            'N', 'C', 'O', 'CA', 'CB', 'CG', 'CD1', 'CE1', 'CZ', 'OH', 'CE2',
            'CD2'
        ],
        "ASN": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'OD1', 'ND2'],
        "GLN": ['N', 'C', 'O', 'CA', 'CB', 'CG', 'CD', 'OE1', 'NE2']
    }

    #s.residue_numbers and s.residue_names have as many instances as atoms
    #we first use zip to create tuples and then set to create unique (disordered) lists of tuples
    #the sorted organizes them. Finally the dict creates an instance (one based) of residue to residue name
    sequence = [(i, j) for i, j in zip(s.residue_numbers, s.residue_names)]
    sequence = sorted(set(sequence))
    sequence = dict(sequence)

    #Read file, 1 based
    lines = open(fname).read().splitlines()
    for i, line in enumerate(lines):
        cols = line.split()
        index_i = int(cols[0])
        index_j = int(cols[1])
        res_i = sequence[index_i]
        res_j = sequence[index_j]
        atoms_i = atoms[res_i]
        atoms_j = atoms[res_j]

        local_contact = []
        for a_i in atoms_i:
            for a_j in atoms_j:
                #EvFold paper defines contact as 5angstrong any atom contact. We are only using heavy atoms
                #Hence, should allow to get closer.
                local_contact.append(
                    s.restraints.create_restraint('distance',
                                                  scaler,
                                                  LinearRamp(0, 100, 0, 1),
                                                  r1=0.0,
                                                  r2=0.0,
                                                  r3=0.60,
                                                  r4=0.75,
                                                  k=250.0,
                                                  doing_eco=doing_eco,
                                                  eco_factor=eco_factor,
                                                  eco_constant=eco_constant,
                                                  eco_linear=eco_linear,
                                                  atom_1_res_index=index_i,
                                                  atom_1_name=a_i,
                                                  atom_2_res_index=index_j,
                                                  atom_2_name=a_j))

        Evolution_restraints.append(
            s.restraints.create_restraint_group(local_contact, 1))

        #print 'Evolution:',index_i,index_j,res_i,res_j

    all_rest = len(Evolution_restraints)
    active = int(accuracy * all_rest)
    print active, all_rest
    s.restraints.add_selectively_active_collection(Evolution_restraints,
                                                   active)
Exemplo n.º 11
0
def setup_system():
    # load the sequence
    sequence = parse.get_sequence_from_AA1(filename='sequence.dat')
    n_res = len(sequence.split())

    # build the system
    p = system.ProteinMoleculeFromSequence(sequence)
    b = system.SystemBuilder(forcefield="ff14sbside")
    s = b.build_system_from_molecules([p])
    s.temperature_scaler = system.GeometricTemperatureScaler(0, 0.6, 300., 450.)

    #
    # Secondary Structure
    #
    ss_scaler = s.restraints.create_scaler('constant')
    ss_rests = parse.get_secondary_structure_restraints(filename='ss.dat', system=s,ramp=LinearRamp(0,100,0,1), scaler=ss_scaler,
            torsion_force_constant=2.5, distance_force_constant=2.5)
    n_ss_keep = int(len(ss_rests) * 1.0) #We enforce 100% of restrains 
    s.restraints.add_selectively_active_collection(ss_rests, n_ss_keep)


    #
    # Distance Restraints
    #
    dist_scaler = s.restraints.create_scaler('nonlinear', alpha_min=0.4, alpha_max=1.0, factor=4.0)

    # High reliability
    #
    #
    old_protocol = s.restraints.create_scaler('nonlinear', alpha_min=0.40, alpha_max=1.00, factor=4.0)
    #
    # Heuristic Restraints
    #
    subset= np.array(list(range(n_res))) + 1

        #
        # Hydrophobic
        #
    create_hydrophobes(s,ContactsPerHydroph=1.2,scaler=old_protocol,group_1=subset,CO=False)
        #
        # Strand Pairing
        #
    sse,active = make_ss_groups(subset=subset)
    try:
        generate_strand_pairs(s,sse,float(active),subset=subset,scaler=old_protocol,CO=False)
    except:
        print("Not using Strand Pairing Heuristic")
        pass

        #
        # Evolutionary restraints
        #
    try:
        create_Evolution(s,accuracy=0.7,scaler=dist_scaler,fname='evolution_contacts.dat')
    except:
        print("Not using Evolutionary restraints")
        pass

    #
    # Distance Restraints
    #
        #
        # Knob restraints
        #
    try:
        knobs,knob_accuracy = get_knob_restraints('Knob.data',s,scaler=dist_scaler)
        n_knobs = int(len(knobs) * knob_accuracy) 
        s.restraints.add_selectively_active_collection(knobs,n_knobs)
    except:
        print("Not using Knob-Socket predictions")
        pass



    # setup mcmc at startup
    movers = []
    n_atoms = s.n_atoms
    for i in range(1, n_res + 1):
        n = s.index_of_atom(i, 'N') - 1
        ca = s.index_of_atom(i, 'CA') - 1
        c = s.index_of_atom(i, 'C') - 1

        mover = mc.DoubleTorsionMover(n, ca, list(range(ca, n_atoms)),
                                      ca, c, list(range(c, n_atoms)))

        movers.append((mover, 1))

    sched = mc.MonteCarloScheduler(movers, n_res * 60)

    # create the options
    options = system.RunOptions()
    options.implicit_solvent_model = 'gbNeck2'
    options.use_big_timestep = False
    options.use_bigger_timestep = True
    options.cutoff = 1.8

    options.use_amap = False
    options.amap_alpha_bias = 1.0
    options.amap_beta_bias = 1.0
    options.timesteps = 11111
    options.minimize_steps = 20000
   # for i in range(30):
   #     print("Heads up! using MC minimizer!")
#    options.min_mc = sched

    # create a store
    store = vault.DataStore(s.n_atoms, N_REPLICAS, s.get_pdb_writer(), block_size=BLOCK_SIZE)
    store.initialize(mode='w')
    store.save_system(s)
    store.save_run_options(options)

    # create and store the remd_runner
    l = ladder.NearestNeighborLadder(n_trials=100)
    policy = adaptor.AdaptationPolicy(2.0, 50, 50)
    a = adaptor.EqualAcceptanceAdaptor(n_replicas=N_REPLICAS, adaptation_policy=policy)

    remd_runner = master_runner.MasterReplicaExchangeRunner(N_REPLICAS, max_steps=N_STEPS, ladder=l, adaptor=a)
    store.save_remd_runner(remd_runner)

    # create and store the communicator
    c = comm.MPICommunicator(s.n_atoms, N_REPLICAS)
    store.save_communicator(c)

    # create and save the initial states
    states = [gen_state(s, i) for i in range(N_REPLICAS)]
    store.save_states(states, 0)

    # save data_store
    store.save_data_store()

    return s.n_atoms