Exemplo n.º 1
0
    def build(self):
        import imageio

        pixels = imageio.imread(self.filepath)
        pixels = channels_to_front(pixels)

        transparent_types = {'.png'}
        filepath = Path(self.filepath)
        if pixels.shape[0] == 4 and filepath.suffix in transparent_types:
            # If normalise is False, then we return the alpha as an extra
            # channel, which can be useful if the alpha channel has semantic
            # meanings!
            if self.normalise:
                p = normalize_pixels_range(pixels[:3])
                return MaskedImage(p,
                                   mask=pixels[-1].astype(np.bool),
                                   copy=False)
            else:
                return Image(pixels, copy=False)

        # Assumed not to have an Alpha channel
        if self.normalise:
            return Image(normalize_pixels_range(pixels), copy=False)
        else:
            return Image(pixels, copy=False)
Exemplo n.º 2
0
def _pil_to_numpy(pil_image, normalise, convert=None):
    p = pil_image.convert(convert) if convert else pil_image
    p = channels_to_front(p)
    if normalise:
        return normalize_pixels_range(p)
    else:
        return p
Exemplo n.º 3
0
def vector_128_dsift(x, dtype=np.float32):
    r"""
    Computes a SIFT feature vector from a square patch (or image). Patch
    **must** be square and the output vector will *always* be a ``(128,)``
    vector. Please see :func:`dsift` for more information.

    Parameters
    ----------
    x : :map:`Image` or subclass or ``(C, Y, Y)`` `ndarray`
        Either the image object itself or an array with the pixels. The first
        dimension is interpreted as channels. Must be square i.e.
        ``height == width``.
    dtype : ``np.dtype``, optional
        The dtype of the returned vector.

    Raises
    ------
    ValueError
        Only square images are supported.
    """
    if not isinstance(x, np.ndarray):
        x = x.pixels
    if x.shape[-1] != x.shape[-2]:
        raise ValueError('This feature only works with square images '
                         'i.e. width == height')
    patch_shape = x.shape[-1]
    n_bins = 4
    c_size = patch_shape // n_bins
    x = normalize_pixels_range(x, error_on_unknown_type=False)
    return dsift(x,
                 window_step_horizontal=patch_shape,
                 window_step_vertical=patch_shape,
                 num_bins_horizontal=n_bins, num_bins_vertical=n_bins,
                 cell_size_horizontal=c_size, cell_size_vertical=c_size,
                 num_or_bins=8, fast=True).astype(dtype)
Exemplo n.º 4
0
def vector_128_dsift(x, dtype=np.float32):
    r"""
    Computes a SIFT feature vector from a square patch (or image). Patch
    **must** be square and the output vector will *always* be a ``(128,)``
    vector. Please see :func:`dsift` for more information.

    Parameters
    ----------
    x : :map:`Image` or subclass or ``(C, Y, Y)`` `ndarray`
        Either the image object itself or an array with the pixels. The first
        dimension is interpreted as channels. Must be square i.e.
        ``height == width``.
    dtype : ``np.dtype``, optional
        The dtype of the returned vector.

    Raises
    ------
    ValueError
        Only square images are supported.
    """
    if not isinstance(x, np.ndarray):
        x = x.pixels
    if x.shape[-1] != x.shape[-2]:
        raise ValueError('This feature only works with square images '
                         'i.e. width == height')
    patch_shape = x.shape[-1]
    n_bins = 4
    c_size = patch_shape // n_bins
    x = normalize_pixels_range(x, error_on_unknown_type=False)
    return dsift(x,
                 window_step_horizontal=patch_shape,
                 window_step_vertical=patch_shape,
                 num_bins_horizontal=n_bins, num_bins_vertical=n_bins,
                 cell_size_horizontal=c_size, cell_size_vertical=c_size,
                 num_or_bins=8, fast=True).astype(dtype)
def _pil_to_numpy(pil_image, normalize, convert=None):
    p = pil_image.convert(convert) if convert else pil_image
    p = channels_to_front(p)
    if normalize:
        return normalize_pixels_range(p)
    else:
        return p
Exemplo n.º 6
0
def _pil_to_numpy(pil_image, normalize, convert=None):
    p = pil_image.convert(convert) if convert else pil_image
    p = np.asarray(p)
    if normalize:
        return normalize_pixels_range(p)
    else:
        return p
Exemplo n.º 7
0
def _pil_to_numpy(pil_image, normalize, convert=None):
    p = pil_image.convert(convert) if convert else pil_image
    p = np.asarray(p)
    if normalize:
        return normalize_pixels_range(p)
    else:
        return p
Exemplo n.º 8
0
def import_mesh(path):
    if path.suffix == '.pkl' or path.suffix == '.gz':
        mesh = import_pickle(path)
    else:
        mesh = m3io.import_mesh(path)
    if hasattr(mesh, "texture") and mesh.texture.pixels.dtype != np.float64:
        mesh.texture.pixels = normalize_pixels_range(mesh.texture.pixels)
    return mesh
Exemplo n.º 9
0
def _imageio_to_menpo(imio_reader, normalise, index):
    pixels = imio_reader.get_data(index)
    pixels = channels_to_front(pixels)

    if normalise:
        return Image(normalize_pixels_range(pixels), copy=False)
    else:
        return Image(pixels, copy=False)
Exemplo n.º 10
0
def imageio_importer(filepath, asset=None, normalise=True, **kwargs):
    r"""
    Imports images using the imageio library - which is actually fairly similar
    to our importing logic - but contains the necessary plugins to import lots
    of interesting image types like RAW images.

    Parameters
    ----------
    filepath : `Path`
        Absolute filepath of the image.
    asset : `object`, optional
        An optional asset that may help with loading. This is unused for this
        implementation.
    normalise : `bool`, optional
        If ``True``, normalise between 0.0 and 1.0 and convert to float. If
        ``False`` just return whatever imageio imports.
    \**kwargs : `dict`, optional
        Any other keyword arguments.

    Returns
    -------
    image : :map:`Image` or subclass
        The imported image.
    """
    import imageio

    pixels = imageio.imread(str(filepath))
    pixels = channels_to_front(pixels)

    transparent_types = {'.png'}
    if pixels.shape[0] == 4 and filepath.suffix in transparent_types:
        # If normalise is False, then we return the alpha as an extra
        # channel, which can be useful if the alpha channel has semantic
        # meanings!
        if normalise:
            p = normalize_pixels_range(pixels[:3])
            return MaskedImage(p, mask=pixels[-1].astype(np.bool),
                               copy=False)
        else:
            return Image(pixels, copy=False)

    # Assumed not to have an Alpha channel
    if normalise:
        return Image(normalize_pixels_range(pixels), copy=False)
    else:
        return Image(pixels, copy=False)
Exemplo n.º 11
0
def _imageio_to_menpo(imio_reader, normalise, index):
    pixels = imio_reader.get_data(index)
    pixels = channels_to_front(pixels)

    if normalise:
        return Image(normalize_pixels_range(pixels), copy=False)
    else:
        return Image(pixels, copy=False)
def imageio_importer(filepath, asset=None, normalize=True, **kwargs):
    r"""
    Imports images using the imageio library - which is actually fairly similar
    to our importing logic - but contains the necessary plugins to import lots
    of interesting image types like RAW images.

    Parameters
    ----------
    filepath : `Path`
        Absolute filepath of the image.
    asset : `object`, optional
        An optional asset that may help with loading. This is unused for this
        implementation.
    normalize : `bool`, optional
        If ``True``, normalize between 0.0 and 1.0 and convert to float. If
        ``False`` just return whatever imageio imports.
    \**kwargs : `dict`, optional
        Any other keyword arguments.

    Returns
    -------
    image : :map:`Image` or subclass
        The imported image.
    """
    import imageio

    pixels = imageio.imread(str(filepath))
    pixels = channels_to_front(pixels)

    transparent_types = {'.png'}
    if pixels.shape[0] == 4 and filepath.suffix in transparent_types:
        # If normalize is False, then we return the alpha as an extra
        # channel, which can be useful if the alpha channel has semantic
        # meanings!
        if normalize:
            p = normalize_pixels_range(pixels[:3])
            return MaskedImage(p, mask=pixels[-1].astype(np.bool),
                               copy=False)
        else:
            return Image(pixels, copy=False)

    # Assumed not to have an Alpha channel
    if normalize:
        return Image(normalize_pixels_range(pixels), copy=False)
    else:
        return Image(pixels, copy=False)
Exemplo n.º 13
0
    def imageio_to_menpo(imio_reader, index):
        pixels = imio_reader.get_data(index)
        pixels = channels_to_front(pixels)

        if pixels.shape[0] == 4:
            # If normalize is False, then we return the alpha as an extra
            # channel, which can be useful if the alpha channel has semantic
            # meanings!
            if normalize:
                p = normalize_pixels_range(pixels[:3])
                return MaskedImage(p, mask=pixels[-1].astype(bool), copy=False)
            else:
                return Image(pixels, copy=False)

        # Assumed not to have an Alpha channel
        if normalize:
            return Image(normalize_pixels_range(pixels), copy=False)
        else:
            return Image(pixels, copy=False)
Exemplo n.º 14
0
    def imageio_to_menpo(imio_reader, index):
        pixels = imio_reader.get_data(index)
        pixels = channels_to_front(pixels)

        if pixels.shape[0] == 4:
            # If normalise is False, then we return the alpha as an extra
            # channel, which can be useful if the alpha channel has semantic
            # meanings!
            if normalise:
                p = normalize_pixels_range(pixels[:3])
                return MaskedImage(p, mask=pixels[-1].astype(np.bool),
                                   copy=False)
            else:
                return Image(pixels, copy=False)

        # Assumed not to have an Alpha channel
        if normalise:
            return Image(normalize_pixels_range(pixels), copy=False)
        else:
            return Image(pixels, copy=False)
Exemplo n.º 15
0
    def _read_one_frame(self):
        r"""
        Reads one frame from the opened ``self._pipe`` and converts it to
        a numpy array

        Returns
        -------
        image : :map:`Image`
            Image of shape ``(self.height, self.width, 3)``
        """
        raw_data = self._pipe.stdout.read(self.height * self.width * 3)
        frame = np.frombuffer(raw_data, dtype=np.uint8)
        frame = frame.reshape((self.height, self.width, 3))
        self._pipe.stdout.flush()
        self.index += 1

        if self.normalize:
            frame = normalize_pixels_range(frame)

        return frame
Exemplo n.º 16
0
    def _read_one_frame(self):
        r"""
        Reads one frame from the opened ``self._pipe`` and converts it to
        a numpy array

        Returns
        -------
        image : :map:`Image`
            Image of shape ``(self.height, self.width, 3)``
        """
        raw_data = self._pipe.stdout.read(self.height*self.width*3)
        frame = np.fromstring(raw_data, dtype=np.uint8)
        frame = frame.reshape((self.height, self.width, 3))
        self._pipe.stdout.flush()
        self.index += 1

        if self.normalize:
            frame = normalize_pixels_range(frame)

        return frame
Exemplo n.º 17
0
def import_mesh(path, hasTexture=False, landmark_type='ibug68'):
    if path.suffix == '.pkl' or path.suffix == '.gz':
        mesh = import_pickle(path)
    else:
        mesh = m3io.import_mesh(path)
    if hasTexture:
        if mesh.texture.pixels.dtype != np.float64:
            mesh.texture.pixels = normalize_pixels_range(mesh.texture.pixels)
    else:
        landmark = []
        count = 0
        with open(str(path) + '.landmark') as pp_file:
            pp_file = csv.reader(pp_file, delimiter=' ')
            for row in pp_file:
                count = count + 1
                if landmark_type == 'ibug100':
                    if count >= 1 and count <= 100:
                        landmark.append(
                            [float(row[0]),
                             float(row[1]),
                             float(row[2])])
                if landmark_type == 'ibug68':
                    if count < 69:
                        landmark.append(
                            [float(row[0]),
                             float(row[1]),
                             float(row[2])])
                if landmark_type == 'ibugEar':
                    if count >= 78 and count <= 88:
                        landmark.append(
                            [float(row[0]),
                             float(row[1]),
                             float(row[2])])
                    if count >= 90 and count <= 100:
                        landmark.append(
                            [float(row[0]),
                             float(row[1]),
                             float(row[2])])
        mesh.landmarks[landmark_type] = PointCloud(np.array(landmark))
    return mesh