def main(operator: Operator, cfg: DictConfig) -> None:
    correct_config_answer = cfg.correct_answer

    def onboarding_is_valid(onboarding_data):
        inputs = onboarding_data["inputs"]
        outputs = onboarding_data["outputs"]
        return outputs.get("answer") == correct_config_answer

    shared_state = SharedStaticTaskState(
        onboarding_data={"correct_answer": correct_config_answer},
        validate_onboarding=onboarding_is_valid,
    )

    operator.launch_task_run(cfg.mephisto, shared_state)
    operator.wait_for_runs_then_shutdown(skip_input=True, log_rate=30)
Exemplo n.º 2
0
def main(operator: Operator, cfg: DictConfig) -> None:
    def onboarding_always_valid(onboarding_data):
        return True

    shared_state = SharedStaticTaskState(
        static_task_data=[
            {
                "text": "This text is good text!"
            },
            {
                "text": "This text is bad text!"
            },
        ],
        validate_onboarding=onboarding_always_valid,
    )

    task_dir = cfg.task_dir
    build_custom_bundle(task_dir)

    operator.launch_task_run(cfg.mephisto, shared_state)
    operator.wait_for_runs_then_shutdown(skip_input=True, log_rate=30)
Exemplo n.º 3
0
def main(operator: Operator, cfg: DictConfig) -> None:
    def onboarding_always_valid(onboarding_data):
        # NOTE you can make an onboarding task and validate it here
        print(onboarding_data)
        return True

    # Right now we're building locally, but should eventually
    # use non-local for the real thing
    tasks = build_tasks(cfg.num_tasks)
    context = build_local_context(cfg.num_tasks)

    def handle_with_model(
        _request_id: str, args: Dict[str, Any], agent_state: RemoteProcedureAgentState
    ) -> Dict[str, Any]:
        """Remote call to process external content using a 'model'"""
        # NOTE this body can be whatever you want
        print(f"The parsed args are {args}, you can do what you want with that")
        print(f"You can also use {agent_state.init_data}, to get task keys")
        assert agent_state.init_data is not None
        idx = agent_state.init_data["local_value_key"]
        print(f"And that may let you get local context, like {context[idx]}")
        return {
            "secret_local_value": context[idx],
            "update": f"this was request {args['arg3'] + 1}",
        }

    function_registry = {
        "handle_with_model": handle_with_model,
    }

    shared_state = SharedRemoteProcedureTaskState(
        static_task_data=tasks,
        validate_onboarding=onboarding_always_valid,
        function_registry=function_registry,
    )

    task_dir = cfg.task_dir
    build_custom_bundle(task_dir)
    operator.launch_task_run(cfg.mephisto, shared_state)
    operator.wait_for_runs_then_shutdown(skip_input=True, log_rate=30)
Exemplo n.º 4
0
def main(operator: Operator, cfg: DictConfig) -> None:
    tasks: List[Dict[str, Any]] = [{}] * cfg.num_tasks
    mnist_model = mnist(pretrained=True)

    def handle_with_model(
            _request_id: str, args: Dict[str, Any],
            agent_state: RemoteProcedureAgentState) -> Dict[str, Any]:
        """Convert the image to be read by MNIST classifier, then classify"""
        img_dat = args["urlData"].split("data:image/png;base64,")[1]
        im = Image.open(BytesIO(base64.b64decode(img_dat)))
        im_gray = im.convert("L")
        im_resized = im_gray.resize((28, 28))
        im_vals = list(im_resized.getdata())
        norm_vals = [(255 - x) * 1.0 / 255.0 for x in im_vals]
        in_tensor = torch.tensor([norm_vals])
        output = mnist_model(in_tensor)
        pred = output.data.max(1)[1]
        print("Predicted digit:", pred.item())
        return {
            "digit_prediction": pred.item(),
        }

    function_registry = {
        "classify_digit": handle_with_model,
    }

    shared_state = SharedRemoteProcedureTaskState(
        static_task_data=tasks,
        function_registry=function_registry,
    )

    task_dir = cfg.task_dir
    build_custom_bundle(task_dir)

    operator.launch_task_run(cfg.mephisto, shared_state)
    operator.wait_for_runs_then_shutdown(skip_input=True, log_rate=30)