Exemplo n.º 1
0
class EvacuationModel(Model):
    """
    This is a simulation of a crowd evacuation from a building.
    Several variables are taken into account: the knowledge of the emergency exits, the age and weight of the agents
    and the presence of stewards that can guide agents toward the emergency exits.
    Agents have different strategies to escape the building such as taking the shortest path to an exit or a random one.

    The goal is to study which combinations of agent types are more likely to escape the building and save themselves and
    how the amount of casualties varies with respect to the different variables.
    """
    def __init__(self,
                 N=10,
                 K=0,
                 width=50,
                 height=50,
                 fire_x=1,
                 fire_y=1,
                 civil_info_exchange=True):
        self.num_civilians = N
        self.num_stewards = K
        self.civil_info_exchange = civil_info_exchange
        self.fire_initial_pos = (fire_x, fire_y)
        self.warning_UI = ""
        self.agents_alive = N + K  # Agents alive and inside the building
        self.agents_saved = []  # Agents that managed to get out
        self.agents_killed = []  # Agents that perished during the evacuation
        self.grid = SingleGrid(height, width, False)
        self.graph = None  # General graph representing walkable terrain
        self.schedule = RandomActivation(
            self)  # Every tick, agents move in a different random order
        # Create exits
        self.pos_exits = [(0, 5), (0, 25), (0, 45)]
        for i in range(3):
            self.pos_exits.append((self.grid.width - 1, 14 + i))

        self.draw_environment(self.pos_exits)
        self.graph = path_finding.create_graph(self)
        # Define data collector
        model_collector = {
            "Agents killed": lambda killed: len(self.agents_killed),
            "Agents saved": lambda saved: len(self.agents_saved)
        }
        for exit_pos in self.pos_exits:
            title = "Exit {}".format(exit_pos)
            model_collector[title] = partial(count_agents_saved, exit_pos)
        self.datacollector = DataCollector(model_reporters=model_collector)
        # Create fire
        # for pos in self.fire_initial_pos:  # Only 1 source of fire since we are setting it from UI
        x, y = self.fire_initial_pos
        if not self.is_inside_square((x, y), (0, 29),
                                     (25, 39)) and not self.is_inside_square(
                                         (x, y), (0, 10), (25, 20)):
            pos = self.fire_initial_pos
        else:
            pos = (1, 1)
            self.warning_UI = "<b>WARNING:</b> Sorry but the position of the fire is outside of the building, " \
                              "change the setting and click reset simulation."
        fire_agent = FireAgent(pos, self)
        self.schedule.add(fire_agent)
        self.grid.place_agent(fire_agent, pos)
        # Create civilian agents
        for i in range(self.num_civilians):

            # a civilian agent will know at least the main entrance to the building
            known_exits = self.pos_exits[-3:]
            a = CivilianAgent(i, self, known_exits)

            self.schedule.add(a)
            # Add the agent to a random grid cell

            while True:
                # pick the random coordinate
                x = self.random.randrange(1, self.grid.width - 1)
                y = self.random.randrange(1, self.grid.height - 1)
                # check if the point is empty and inside of the building
                if self.grid.is_cell_empty((x, y)) and not self.is_inside_square((x, y), (0, 29), (25, 39)) \
                        and not self.is_inside_square((x, y), (0, 10), (25, 20)):
                    break

            self.grid.place_agent(a, (x, y))

        # Create steward agents
        for i in range(self.num_civilians,
                       self.num_civilians + self.num_stewards):

            # a steward agent will know all exits.
            known_exits = self.pos_exits
            a = StewardAgent(i, self, known_exits)

            self.schedule.add(a)
            # Add the agent to a random grid cell

            while True:
                # pick the random coordinate
                x = self.random.randrange(1, self.grid.width - 1)
                y = self.random.randrange(1, self.grid.height - 1)
                # check if the point is empty and inside of the building
                if self.grid.is_cell_empty((x, y)) and not self.is_inside_square((x, y), (0, 29), (25, 39)) \
                        and not self.is_inside_square((x, y), (0, 10), (25, 20)):
                    break

            self.grid.place_agent(a, (x, y))

        self.running = True  # Set this to false when we want to finish simulation (e.g. all agents are out of building)
        self.datacollector.collect(self)

    @staticmethod
    def is_inside_square(point, bottom_left, top_right):
        return bottom_left[0] <= point[0] <= top_right[0] and bottom_left[
            1] <= point[1] <= top_right[1]

    def step(self):
        self.schedule.step()
        # collect data
        self.datacollector.collect(self)

        # Halt if no more agents in the building
        if self.count_agents(self) == 0:
            self.running = False

    def remove_agent(self, agent, reason, **kwargs):
        """
        Removes an agent from the simulation. Depending on the reason it can be
        Args:
            agent (Agent):
            reason (Reasons):

        Returns:
            None
        """
        if reason == Reasons.SAVED:
            self.agents_saved.append(agent)
        elif reason == Reasons.KILLED_BY_FIRE:
            self.agents_killed.append(agent)

        self.agents_alive -= 1
        self.schedule.remove(agent)
        self.grid.remove_agent(agent)

    def draw_environment(self, exits=None):
        length_E = int(self.grid.height /
                       5)  # length of the vertical segments of the E
        depth_E = int(self.grid.width /
                      2)  # length of the horizontal segments of the E
        for i in range(3):
            start = max(0, 2 * i * length_E)
            self.draw_wall((0, start), (0, start + length_E - 1))
        for i in range(2):
            start = 2 * i * length_E + length_E
            self.draw_wall((depth_E, start), (depth_E, start + length_E - 1))
        # Horizontal lines of the E (BB)
        aux_y_coord = [
            length_E, 2 * length_E, 3 * length_E - 1, 4 * length_E - 1
        ]
        for y in aux_y_coord:
            self.draw_wall((0, y), (depth_E, y))
        top_left_corner = (0, self.grid.height - 1)
        top_right_corner = (self.grid.width - 1, self.grid.height - 1)
        bottom_right_corner = (self.grid.width - 1, 0)
        # Draw long contour lines E
        self.draw_wall((0, 0), bottom_right_corner)
        self.draw_wall(top_left_corner, top_right_corner)
        self.draw_wall(bottom_right_corner, top_right_corner)

        # Draw exits
        self.draw_exits(exits)

    def draw_wall(self, start, end):
        """
        Draws a line that goes from start point to end point.

        Args:
            start (List): Coordinates of line's starting point
            end (List): Coordinates of line's end point

        Returns:
            None
        """
        diff_x, diff_y = np.subtract(end, start)
        wall_coordinates = np.asarray(start)

        if self.grid.is_cell_empty(wall_coordinates.tolist()):
            w = WallAgent(wall_coordinates.tolist(), self)
            self.grid.place_agent(w, wall_coordinates.tolist())

        while diff_x != 0 or diff_y != 0:
            if abs(diff_x) == abs(diff_y):
                # diagonal wall
                wall_coordinates[0] += np.sign(diff_x)
                wall_coordinates[1] += np.sign(diff_y)
                diff_x -= 1
                diff_y -= 1
            elif abs(diff_x) < abs(diff_y):
                # wall built in y dimension
                wall_coordinates[1] += np.sign(diff_y)
                diff_y -= 1
            else:
                # wall built in x dimension
                wall_coordinates[0] += np.sign(diff_x)
                diff_x -= 1
            if self.grid.is_cell_empty(wall_coordinates.tolist()):
                w = WallAgent(wall_coordinates.tolist(), self)
                self.grid.place_agent(w, wall_coordinates.tolist())

    def draw_exits(self, exits_list):
        for ext in exits_list:
            e = ExitAgent(ext, self)
            if not self.grid.is_cell_empty(ext):
                # Only walls should exist in the grid at this time, so no need to remove it from scheduler
                agent = self.grid.get_cell_list_contents(ext)
                self.grid.remove_agent(agent[0])
            # Place exit
            self.schedule.add(e)
            self.grid.place_agent(e, ext)

    def spread_fire(self, fire_agent):
        fire_neighbors = self.grid.get_neighborhood(fire_agent.pos,
                                                    moore=True,
                                                    include_center=False)
        for grid_space in fire_neighbors:
            if self.grid.is_cell_empty(grid_space):
                # Create new fire agent and add it to grid and scheduler
                new_fire_agent = FireAgent(grid_space, self)
                self.schedule.add(new_fire_agent)
                self.grid.place_agent(new_fire_agent, grid_space)
            else:
                # If human agents, eliminate them and spread anyway
                agent = self.grid.get_cell_list_contents(grid_space)[0]
                if isinstance(agent, (CivilianAgent, StewardAgent)):
                    new_fire_agent = FireAgent(grid_space, self)
                    self.remove_agent(agent, Reasons.KILLED_BY_FIRE)
                    self.schedule.add(new_fire_agent)
                    self.grid.place_agent(new_fire_agent, grid_space)

    @staticmethod
    def count_agents(model):
        """
        Helper method to count agents alive and still in the building.
        """
        count = 0
        for agent in model.schedule.agents:
            agent_type = type(agent)
            if (agent_type == CivilianAgent) or (agent_type == StewardAgent):
                count += 1
        return count
Exemplo n.º 2
0
class Factory(Model):
    """The Factory model that maintains the state of the whole factory."""

    def __init__(self, grid_w, grid_h, n_robots):
        """Initialize factory."""
        # Initialize.
        self.orders = 0
        self.n_robots = n_robots
        self.scheduler = RandomActivation(self)
        self.grid = SingleGrid(grid_w, grid_h, torus=False)
        self.init_astar()
        # Initialize departments.
        self.machine = Machine("machine", self, self.grid.find_empty())
        self.store = Store("store", self, self.grid.find_empty())
        self.packaging = Packaging("packaging", self, self.grid.find_empty())
        self.dept_positions = [self.machine.pos, self.store.pos, self.packaging.pos]
        # Initialize robots.
        for i in range(self.n_robots):
            # Create robot.
            r = Robot(i, self)
            # Initialize random location.
            pos = self.grid.find_empty()
            self.grid.place_agent(r, pos)
            # Register with scheduler.
            self.scheduler.add(r)
        # Initialize visualization.
        plt.ion()

    def add_order(self):
        """Increment the number of orders to the factory."""
        self.orders += 1

    def step(self):
        """Advance the factory by one step."""
        # Step through factory. Check for orders.
        if self.orders > 0:
            self.store.orders += 1
            self.orders -= 1
        # Step through departments.
        self.store.step()
        self.machine.step()
        self.packaging.step()
        # Step through robots.
        self.scheduler.step()
        # Visualize.
        self.visualize()

    def init_astar(self):
        """Initialize a-star resources so that it doesn't have to calculated for each robot.

        Initialized in such a way that:
            * A diagonal paths are allowed.
            * The path calculated takes into account all obstacles in the grid.
        """
        def get_empty_neighborhood(pos):
            """A sub function to calculate empty neighbors of a point for a-star."""
            neighbors = self.grid.get_neighborhood(pos=pos, moore=True)
            return [n for n in neighbors if self.grid.is_cell_empty(n)]
        # Initialize a path finder object once for the entire factory.
        self.path_finder = astar.pathfinder(neighbors=get_empty_neighborhood,
                                            distance=astar.absolute_distance,
                                            cost=astar.fixed_cost(1))

    def find_nearest_aimless_robot(self, pos):
        """Find the nearest aimless robot to a given position in the factory."""
        def is_aimless(robot, pos):
            """Check if the robot satisfied aimless condition."""
            if robot.destination is None:
                return True
            else:
                return False

        aimless_robots = [robot for robot in self.scheduler.agents if is_aimless(robot, pos)]
        if len(aimless_robots) != 0:
            robot_distances = [astar.absolute_distance(pos, robot.pos) for robot in aimless_robots]
            nearest_index = np.argmin(robot_distances)
            return aimless_robots[nearest_index]
        else:
            return None

    def find_robot_at_position(self, pos):
        """Find robot that is at a given location in the factory that is not busy."""
        for robot in self.scheduler.agents:
            if robot.pos == pos:
                return robot
        return None

    def find_next_position_towards_destination(self, curr_pos, dest_pos):
        """Find the next empty position to move in the direction of the destination."""
        n_steps, path = self.path_finder(curr_pos, dest_pos)  # Handles non-empty locations.
        # NOTE: We cannot find a valid path to the destination when:
        #   1) The destination has an another robot located inside it, which also occurs when curr_pos and
        #       dest_pos are the same.
        #   2) The path is entirely blocked.
        #   In these cases we return the next position to be the curr_pos, in order to wait until things
        #   clear up.
        if n_steps is None or n_steps <= 0:  # No valid path to destination
            next_pos = curr_pos
            print("[MOVE] Warning: No path to destination from {} --> {}".format(curr_pos, dest_pos))
        # This mean there's a valid path to destination.
        else:
            # index 0, is the curr_pos, index 1 is the next position.
            next_pos = path[1]
        return next_pos

    def find_next_position_for_random_walk(self, curr_pos):
        """Find a valid location for a robot to just randomly walk into."""
        def is_pos_empty(pos):
            """A sub function if a cell is empty for random walking."""
            if self.grid.is_cell_empty(pos) and pos not in self.dept_positions:
                return True
            else:
                return False
        neighborhood = self.grid.get_neighborhood(curr_pos, moore=True)
        empty_neighborhood = [n for n in neighborhood if is_pos_empty(n)]
        if len(empty_neighborhood) > 0:
            next_index = np.random.randint(len(empty_neighborhood))
            next_pos = empty_neighborhood[next_index]
        else:
            next_pos = curr_pos
        return next_pos

    def visualize(self):
        """A chess board type visualization."""
        def heatmap(a):
            cMap = ListedColormap(['grey', 'black', 'green', 'orange', 'red', 'blue'])
            sns.heatmap(a, vmin=0, vmax=6, cmap=cMap, linewidths=1)
            plt.pause(0.15)
            plt.clf()

        g = np.zeros((self.grid.height, self.grid.width), dtype=int)
        g[self.store.pos] = 3
        g[self.machine.pos] = 4
        g[self.packaging.pos] = 5
        for robot in self.scheduler.agents:
            if robot.destination is None:
                g[robot.pos] = 1
            else:
                g[robot.pos] = 2

        heatmap(g)
Exemplo n.º 3
0
class DaisyModel(Model):
    """ "Daisys" grow, when the temperature is right. But they influence temperature themselves via their ability to block a certain amount of sunlight (albedo, indicated by color). They spread and they mutate (changing albedo) and thus adapt to different conditions."""
    def __init__(self, 
                 N, 
                 width, 
                 height, 
                 luminosity, 
                 heat_radius, 
                 mutation_range, 
                 surface_albedo, 
                 daisy_lifespan, 
                 daisy_tmin, 
                 daisy_tmax,
                 lum_model,
                 lum_increase):
        # Setup parameter
        self.dimensions = (width, height)
        self.running = True # never stop!
        self.num_agents = min([N, (width * height)]) # never more agents than cells
        self.grid = SingleGrid(width, height, torus=True)
        self.schedule = RandomActivation(self)
        # Model parameter
        self.mutation_range = mutation_range # default: 0.05
        self.luminosity = luminosity # default 1.35
        self.heat_radius = heat_radius
        self.surface_albedo = surface_albedo # default: 0.4
        self.lum_model = lum_model
        self.lum_increase = lum_increase # tried 0.001
        # Daisy parameter
        self.daisy_lifespan = daisy_lifespan
        self.daisy_tmin = daisy_tmin
        self.daisy_tmax = daisy_tmax

        # to inhibit using same postition twice: draw from urn
        position_list = []
        for i in range(width): # put positions in urn
            for j in range(height):
                position_list.append((i,j))
        for i in range(self.num_agents): # draw from urn
            a = DaisyAgent(i, self, 
                            random.uniform(0.1, 0.9), # random starting albedo
                            self.daisy_lifespan, self.daisy_tmin, self.daisy_tmax)
            self.schedule.add(a)
            pos = random.choice(position_list)
            self.grid.place_agent(a, pos)
            position_list.remove(pos)

        # Data collectors
        self.datacollector = DataCollector(
            model_reporters = {"Solar irradiance": get_irradiance, 
                               "Population": get_population,
                               "Mean albedo": get_mean_albedo,
                               "Population: North - South": get_north_south_population
                               }
        )

    def step(self):
        print(self.lum_model)
        if self.lum_model == 'linear increase':
            self.luminosity = linear_increase(self)


        self.datacollector.collect(self)
        self.schedule.step()
        

    def get_lat(self, pos):
        """ The grid is meant to be a sphere. This gets the latitude. Ranges from 0.0 (equator) to 1.0 (pole).  """
        return (pos[1] / self.dimensions[1])

    def get_GNI(self, pos):
        """ gives solar irradiance, depending on latitude"""
        return self.luminosity * math.sin(self.get_lat(pos)*math.pi)

    def expand_positionlist(self, pos_list):
        """ expands a list of positions, adding neighboring positions  """
        expanded_list = []
        for i in pos_list:
            expanded_list += self.grid.get_neighborhood(i, moore=True, include_center=False)
        return list(set(expanded_list))

    def get_local_heat(self, pos):
        """ Global Horizontal Irradiance (without diffusive irradiance) from pole (lower border) to pole (upper border). model is torus! """
        neighborhood = self.grid.get_neighborhood(pos, moore=True, include_center=True)
        
        if self.heat_radius > 1: # if radius of local temperature is >1, this expand the position list.
            for i in range(self.heat_radius):
                neighborhood = self.expand_positionlist(neighborhood)

        heat = []
        for i in neighborhood:
            if self.grid.is_cell_empty(i): # empty cell: surface albedo
                heat.append(self.get_GNI(pos) * (1 - self.surface_albedo) )
            else:
                inhabitant = self.grid.get_cell_list_contents(i)[0] 
                heat.append(self.get_GNI(pos) * (1 - inhabitant.albedo) ) # cell with daisy
        return sum(heat)/ len(neighborhood)
Exemplo n.º 4
0
class DiseaseModel(Model):
    """
    A model with some number of agents.
    highS: Number of agents with high sociability.
    middleS: Number of agents with middle sociability.
    lowS: Number of agents with low sociability.
    width: Width of the grid.
    height: Height of the grid.
    edu_setting: If true, agents will follow a schedule and sit in classrooms,
    else they will move freely through an open grid.
    cureProb: Probability of agent getting better.
    cureProbFac: Factor of cureProb getting higher.
    mutateProb: Probability of a disease mutating.
    diseaseRate: Rate at which the disease spreads.
    """
    def __init__(self, highS, middleS, lowS, width, height, edu_setting=True,
                 cureProb=0.1, cureProbFac=2/1440, mutateProb=0.0050,
                 diseaseRate=0.38):
        super().__init__()
        self.num_agents = highS + middleS + lowS
        self.lowS = lowS
        self.middleS = middleS
        self.highS = highS
        self.initialCureProb = cureProb
        self.cureProbFac = cureProbFac
        self.mutateProb = mutateProb
        self.diseaseRate = diseaseRate
        self.edu_setting = edu_setting
        self.maxDisease = 0  # amount of mutations
        self.counter = 540  # keeps track of timesteps
        self.removed = []
        self.exit = (width - 1, floor(height / 2))
        # Check if agents fit within grid
        if self.num_agents > width * height:
            raise ValueError("Number of agents exceeds grid capacity.")

        # Create grid with random activation
        self.grid = SingleGrid(width, height, True)
        self.schedule = RandomActivation(self)

        if edu_setting:
            # Create walls
            numberRooms = 3
            self.add_walls(numberRooms, width, height)

            self.midWidthRoom = floor(width / numberRooms / 2)
            self.midHeightRoom = floor(height / numberRooms / 2)
            self.widthRoom = floor(width / numberRooms)
            self.heightRoom = floor(height / numberRooms)
            numberRows = floor((self.heightRoom) / 2)
            widthRows = self.widthRoom - 4
            location = [[] for _ in range(numberRooms * 2)]
            for i in range(numberRooms):
                for j in range(0, numberRows, 2):
                    startWidth = 2 + (i % 3) * self.widthRoom
                    for currentWidth in range(widthRows):
                        location[i] += [(startWidth + currentWidth, j)]
            for i in range(3, numberRooms * 2):
                for j in range(0, numberRows, 2):
                    startWidth = 2 + (i % 3) * self.widthRoom
                    for currentWidth in range(widthRows):
                        location[i] += [(startWidth + currentWidth,
                                         height - 1 - j)]

            # Set 3 goals per roster
            self.roster = [[location[0], location[3], location[1]],
                           [location[5], location[2], location[0]],
                           [location[4], location[1], location[5]]]

        # Create agents
        self.addAgents(lowS, 0, 0)
        self.addAgents(middleS, lowS, 1)
        self.addAgents(highS, lowS + highS, 2)

        # set up data collecter
        self.datacollector = DataCollector(
            model_reporters={"diseasepercentage": disease_collector},
            agent_reporters={"disease": "disease"})

    def heuristic(self, start, goal):
        """
        Returns manhattan distance.
        start: current location (x,y)
        goal: goal location (x,y)
        """
        dx = abs(start[0] - goal[0])
        dy = abs(start[1] - goal[1])
        return dx + dy

    def get_vertex_neighbors(self, pos):
        """
        Returns all neighbors.
        pos: current position
        """
        n = self.grid.get_neighborhood(pos, moore=False)
        neighbors = []
        for item in n:
            if not abs(item[0] - pos[0]) > 1 and not abs(item[1] - pos[1]) > 1:
                neighbors += [item]
        return neighbors

    def move_cost(self, location):
        """
        Return the cost of a location.
        """
        if self.grid.is_cell_empty(location):
            return 1  # Normal movement cost
        else:
            return 100  # Very difficult to go through walls

    def add_walls(self, n, widthGrid, heightGrid):
        """
        Add walls in grid.
        n: number of rooms horizontally
        widthGrid: width of the grid
        heightGrid: height of the grid
        """
        widthRooms = floor(widthGrid / n)
        heightRooms = floor(heightGrid / n)
        heightHall = heightGrid - 2 * heightRooms
        # Add horizontal walls
        for i in range(n - 1):
            for y in range(heightRooms):
                brick = wall(self.num_agents, self)
                self.grid.place_agent(brick, ((i + 1) * widthRooms, y))
                self.grid.place_agent(brick, ((i + 1) * widthRooms, y +
                                      heightRooms + heightHall))
        doorWidth = 2
        # Add vertical walls
        for x in range(widthGrid):
            if (x % widthRooms) < (widthRooms - doorWidth):
                brick = wall(self.num_agents, self)
                self.grid.place_agent(brick, (x, heightRooms))
                self.grid.place_agent(brick, (x, heightRooms + heightHall - 1))

    def addAgents(self, n, startID, sociability):
        """
        Add agents with a sociability.
        n: number of agents
        startID: ID of the first added agent
        sociability: sociability of the agents
        """
        disease_list = np.random.randint(0, 2, n)
        for i in range(n):
            # Set schedule for every agent if educational setting
            if self.edu_setting:
                a_roster = []
                rosterNumber = self.random.randrange(len(self.roster))
                rooms = self.roster[rosterNumber]
                for roomNumber in range(len(rooms)):
                    loc = self.random.choice(rooms[roomNumber])
                    a_roster += [loc]
                    (self.roster[rosterNumber][roomNumber]).remove(loc)
            else:
                a_roster = []

            a = DiseaseAgent(i + startID, sociability, self, disease_list[i],
                             a_roster)
            self.schedule.add(a)
            # Set agent outside grid, ready to enter, if edu setting
            # else randomly place on empty spot on grid
            if self.edu_setting:
                self.removed += [a]
                a.pos = None
            else:
                self.grid.place_agent(a, self.grid.find_empty())

    def step(self):
        """
        Continue one step in simulation.
        """
        self.counter += 1
        self.datacollector.collect(self)
        self.schedule.step()
Exemplo n.º 5
0
class DiseaseModel(Model):
	"""
	A model with some number of agents.
	highS: Number of agents with high sociability.
	middleS: Number of agents with middle sociability.
	lowS: Number of agents with low sociability.
	width: Width of the grid.
	height: Height of the grid.
	edu_setting: Classrooms and set schedule if true, else random free movement.
	cureProb: Probability of agent getting better.
	cureProbFac: Factor of cureProb getting higher.
	mutateProb: Probability of a disease mutating.
	diseaseRate: Rate at which the disease spreads.
	"""
	def __init__(self, highS, middleS, lowS, width, height, edu_setting=True, cureProb=0.1, cureProbFac=2/1440, mutateProb=0.0050, diseaseRate=0.38):
		super().__init__()
		self.num_agents = highS + middleS + lowS
		self.lowS = lowS
		self.middleS = middleS
		self.highS = highS
		self.initialCureProb = cureProb
		self.cureProbFac = cureProbFac
		self.mutateProb = mutateProb
		self.diseaseRate = diseaseRate
		self.edu_setting = edu_setting
		self.maxDisease = 0# amount of mutations
		self.counter = 540 # keeps track of timesteps
		self.removed = []
		self.exit = (width-1,floor(height/2))
		# Check if agents fit within grid
		if self.num_agents > width * height:
			raise ValueError("Number of agents exceeds grid capacity.")

		# Create grid with random activation
		self.grid = SingleGrid(width, height, True)
		self.schedule = RandomActivation(self)

		if edu_setting:
			# Create walls
			numberRooms = 3
			self.add_walls(numberRooms, width, height)
			self.midWidthRoom = floor(width / numberRooms / 2)
			self.midHeightRoom = floor(height / numberRooms / 2)

			# Calculate the centers of the 6 rooms
			roomLeftDown = (5 * self.midWidthRoom, self.midHeightRoom)
			roomLeftMid = (3 * self.midWidthRoom, self.midHeightRoom)
			roomLeftUp = (self.midWidthRoom, self.midHeightRoom)
			roomRightDown = (5 * self.midWidthRoom, 5 * self.midHeightRoom, )
			roomRightMid = (3 * self.midWidthRoom, 5 * self.midHeightRoom)
			roomRightUp = (self.midWidthRoom, 5 * self.midHeightRoom)

			# Set 3 goals per roster
			self.roster = [[roomLeftDown, roomLeftUp, roomRightMid], [roomRightMid, roomLeftDown, roomRightDown],
							[roomRightUp, roomRightDown, roomLeftUp]]

		# Create agents
		self.addAgents(lowS, 0, 0)
		self.addAgents(middleS, lowS, 1)
		self.addAgents(highS, lowS + highS, 2)

		self.datacollector = DataCollector(
			model_reporters={"diseasepercentage": disease_collector},
			agent_reporters={"disease": "disease"})

	def heuristic(self, start, goal):
		"""
		Returns manhattan distance.
		start: current location (x,y)
		goal: goal location (x,y)
		"""
		dx = abs(start[0] - goal[0])
		dy = abs(start[1] - goal[1])
		return dx + dy

	def get_vertex_neighbors(self, pos):
		"""
		Returns all neighbors.
		pos: current position
		"""
		n = self.grid.get_neighborhood(pos, moore=False)
		neighbors = []
		for item in n:
			if not abs(item[0]-pos[0]) > 1 and not abs(item[1]-pos[1]) > 1:
				neighbors += [item]
		return neighbors

	def move_cost(self, location):
		"""
		Return the cost of a location.
		"""
		if self.grid.is_cell_empty(location):
			return 1 # Normal movement cost
		else:
			return 100

	def add_walls(self, n, widthGrid, heightGrid):
		"""
		Add walls in grid.
		n: number of rooms horizontally
		widthGrid: width of the grid
		heightGrid: height of the grid
		"""
		widthRooms = floor(widthGrid/n)
		heightRooms = floor(heightGrid/n)
		widthHall = widthGrid - 2 * widthRooms
		heightHall = heightGrid - 2 * heightRooms
		# Add horizontal walls
		for i in range(n - 1):
			for y in range(heightRooms):
				brick = wall(self.num_agents, self)
				self.grid.place_agent(brick, ((i + 1) * widthRooms, y))
				self.grid.place_agent(brick, ((i + 1) * widthRooms, y + heightRooms + heightHall))
		doorWidth = 2
		# Add vertical walls
		for x in range(widthGrid):
			if (x % widthRooms) < (widthRooms - doorWidth):
				brick = wall(self.num_agents, self)
				self.grid.place_agent(brick, (x, heightRooms))
				self.grid.place_agent(brick, (x, heightRooms + heightHall - 1))

	def addAgents(self, n, startID, sociability):
		"""
		Add agents with a sociability.
		n: number of agents
		startID: ID of the first added agent
		sociability: sociability of the agents
		"""
		disease_list = np.random.randint(0,2,n)
		for i in range(n):
			a = DiseaseAgent(i + startID, sociability,self,disease_list[i])
			self.schedule.add(a)
			# Add the agent to a random grid cell
			location = self.grid.find_empty()
			self.grid.place_agent(a, location)
	def step(self):
		"""
		Continue one step in simulation.
		"""
		self.counter += 1
		self.datacollector.collect(self)
		self.schedule.step()
class SeparationBarrierModel(Model):
    def __init__(self, height, width, palestinian_density, settlement_density,
                 settlers_violence_rate, settlers_growth_rate, suicide_rate, greed_level,
                 settler_vision=1, palestinian_vision=1, 
                 movement=True, max_iters=1000):

        super(SeparationBarrierModel, self).__init__()
        self.height = height
        self.width = width
        self.palestinian_density = palestinian_density
        self.settler_vision = settler_vision
        self.palestinian_vision = palestinian_vision
        self.settlement_density = settlement_density
        self.movement = movement
        self.running = True
        self.max_iters = max_iters
        self.iteration = 0
        self.schedule = RandomActivation(self)
        self.settlers_violence_rate = settlers_violence_rate
        self.settlers_growth_rate = settlers_growth_rate
        self.suicide_rate = suicide_rate
        self.greed_level = greed_level

        self.total_violence = 0

        self.grid = SingleGrid(height, width, torus=False)

        model_reporters = {
        }
        agent_reporters = {
#           "x": lambda a: a.pos[0],
#           "y": lambda a: a.pos[1],
        }
        self.dc = DataCollector(model_reporters=model_reporters,
                                agent_reporters=agent_reporters)
        self.unique_id = 0

        # Israelis and palestinans split the region in half
        for (contents, x, y) in self.grid.coord_iter():
            if random.random() < self.palestinian_density:
                palestinian = Palestinian(self.unique_id, (x, y), vision=self.palestinian_vision, breed="Palestinian",
                          model=self)
                self.unique_id += 1
                self.grid.position_agent(palestinian, x,y)
                self.schedule.add(palestinian)
            elif ((y > (self.grid.height) * (1-self.settlement_density)) and random.random() < self.settlement_density):
                settler = Settler(self.unique_id, (x, y),
                                  vision=self.settler_vision, model=self, breed="Settler")
                self.unique_id += 1
                self.grid.position_agent(settler, x,y)
                self.schedule.add(settler)

    def add_settler(self, pos):
        settler = Settler(self.unique_id, pos,
                          vision=self.settler_vision, model=self, breed="Settler")
        self.unique_id += 1
        self.grid.position_agent(settler, pos[0], pos[1])
        self.schedule.add(settler)

    def set_barrier(self,victim_pos, violent_pos):
        #print("Set barrier - Greed level", self.greed_level)
        visible_spots = self.grid.get_neighborhood(victim_pos,
                                                        moore=True, radius=self.greed_level + 1)
        furthest_empty  = self.find_furthest_empty_or_palestinian(victim_pos, visible_spots)
        x,y = furthest_empty
        current = self.grid[y][x]
        #print ("Set barrier!!", pos, current)
        free = True
        if (current is not None and current.breed == "Palestinian"):
            #print ("Relocating Palestinian")
           free =  self.relocate_palestinian(current, current.pos)

        if (free):
            barrier = Barrier(-1, furthest_empty, model=self)
            self.grid.position_agent(barrier, x,y)
        
        # Relocate the violent palestinian
        #violent_x, violent_y = violent_pos
        #if violent_pos != furthest_empty:
        #    violent_palestinian = self.grid[violent_y][violent_x]
        #    self.relocate_palestinian(violent_palestinian, furthest_empty)

    def relocate_palestinian(self, palestinian, destination):
        #print ("Relocating Palestinian in ", palestinian.pos, "To somehwhere near ", destination)
        visible_spots = self.grid.get_neighborhood(destination,
                                                        moore=True, radius=palestinian.vision)
        nearest_empty = self.find_nearest_empty(destination, visible_spots)
        #print("First Nearest empty to ", palestinian.pos, " Is ", nearest_empty)
        if (nearest_empty):
            self.grid.move_agent(palestinian, nearest_empty)
        else:
            #print ("Moveing to random empty")
            if (self.grid.exists_empty_cells()):
                self.grid.move_to_empty(palestinian)
            else:
                return False

        return True

    def find_nearest_empty(self, pos, neighborhood):
        nearest_empty = None
        sorted_spots = self.sort_neighborhood_by_distance(pos, neighborhood)
        index = 0
        while (nearest_empty is None and index < len(sorted_spots)):
            if self.grid.is_cell_empty(sorted_spots[index]):
                nearest_empty = sorted_spots[index]
            index += 1

        return nearest_empty

    def find_furthest_empty_or_palestinian(self, pos, neighborhood):
        furthest_empty = None
        sorted_spots = self.sort_neighborhood_by_distance(pos, neighborhood)
        sorted_spots.reverse()
        index = 0
        while (furthest_empty is None and index < len(sorted_spots)):
            spot = sorted_spots[index]
            if self.grid.is_cell_empty(spot) or self.grid[spot[1]][spot[0]].breed == "Palestinian" :
                furthest_empty = sorted_spots[index]
            index += 1

        return furthest_empty



    def sort_neighborhood_by_distance(self, from_pos, neighbor_spots):
        from_x, from_y = from_pos
        return sorted(neighbor_spots, key = lambda spot: self.eucledean_distance(from_x, spot[0], from_y, spot[1], self.grid.width, self.grid.height))


    def eucledean_distance(self, x1,x2,y1,y2,w,h):
        # http://stackoverflow.com/questions/2123947/calculate-distance-between-two-x-y-coordinates
        return math.sqrt(min(abs(x1 - x2), w - abs(x1 - x2)) ** 2 + min(abs(y1 - y2), h - abs(y1-y2)) ** 2)
        

    def step(self):
        """
        Advance the model by one step and collect data.
        """
        self.violence_count = 0
      #  for i in range(100):
        self.schedule.step()
        self.total_violence += self.violence_count
      #  average = self.violence_count / 100
        #print("Violence average %f " % average)
        print("Total Violence: ", self.total_violence)
Exemplo n.º 7
0
class GTModel(Model):
    def __init__(self, debug, size, i_n_agents, i_strategy, i_energy,
                 child_location, movement, k, T, M, p, d, strategies_to_count,
                 count_tolerance, mutation_type, death_threshold, n_groups):
        self.grid = SingleGrid(size, size, torus=True)
        self.schedule = RandomActivation(self)
        self.running = True
        self.debug = debug
        self.size = size
        self.agent_idx = 0
        self.i_energy = i_energy

        # Payoff matrix in the form (my_move, op_move) : my_reward
        self.payoff = {
            ('C', 'C'): 2,
            ('C', 'D'): -3,
            ('D', 'C'): 3,
            ('D', 'D'): -1,
        }
        # Constant for max population control (cost of surviving)
        self.k = k
        # Constant for controlling dying of old age
        self.M = M
        # Minimum lifespan
        self.T = T
        # Minimum energy level to reproduce
        self.p = p
        # Mutation "amplitude"
        self.d = d
        # Whether to spawn children near parents or randomly
        self.child_location = child_location
        # Specify the type of movement allowed for the agents
        self.movement = movement
        # Specify how the agents mutate
        self.mutation_type = mutation_type
        # The minimum total_energy needed for an agent to survive
        self.death_threshold = death_threshold

        # Vars regarding which strategies to look for
        self.strategies_to_count = strategies_to_count
        self.count_tolerance = count_tolerance

        # Add agents (one agent per cell)
        all_coords = [(x, y) for x in range(size) for y in range(size)]
        agent_coords = self.random.sample(all_coords, i_n_agents)

        for _ in range(i_n_agents):
            group_idx = (None if n_groups is None else self.random.choice(
                range(n_groups)))
            agent = GTAgent(self.agent_idx, group_idx, self, i_strategy.copy(),
                            i_energy)
            self.agent_idx += 1
            self.schedule.add(agent)
            self.grid.place_agent(agent, agent_coords.pop())

        # Collect data
        self.datacollector = DataCollector(
            model_reporters={
                **{
                    'strategies': get_strategies,
                    'n_agents': total_n_agents,
                    'avg_agent_age': avg_agent_age,
                    'n_friendlier': n_friendlier,
                    'n_aggressive': n_aggressive,
                    'perc_cooperative_actions': perc_cooperative_actions,
                    'n_neighbors': n_neighbor_measure,
                    'avg_delta_energy': avg_delta_energy,
                    'perc_CC': perc_CC_interactions,
                    'lin_fit_NC': coop_per_neig,
                    'lin_fit_NC_intc': coop_per_neig_intc,
                },
                **{
                    label: strategy_counter_factory(strategy, count_tolerance)
                    for label, strategy in strategies_to_count.items()
                }
            })

    def alpha(self):
        # Return the cost of surviving, alpha
        DC = self.payoff[('D', 'C')]
        CC = self.payoff[('C', 'C')]
        N = len(self.schedule.agents)

        return self.k + 4 * (DC + CC) * N / (self.size * self.size)

    def time_to_die(self, agent):
        # There is a chance every iteration to die of old age: (A - T) / M
        # There is a 100% to die if the agents total energy reaches 0
        return (agent.total_energy < self.death_threshold
                or self.random.random() < (agent.age - self.T) / self.M)

    def get_child_location(self, agent):
        if self.child_location == 'global':
            return self.random.choice(sorted(self.grid.empties))

        elif self.child_location == 'local':
            # Iterate over the radius, starting at 1 to find empty cells
            for rad in range(1, int(self.size / 2)):
                possible_steps = [
                    cell for cell in self.grid.get_neighborhood(
                        agent.pos,
                        moore=False,
                        include_center=False,
                        radius=rad,
                    ) if self.grid.is_cell_empty(cell)
                ]

                if possible_steps:
                    return self.random.choice(possible_steps)

            # If no free cells in radius size/2 pick a random empty cell
            return self.random.choice(sorted(self.grid.empties))

    def maybe_mutate(self, agent):
        # Mutate by adding a random d to individual Pi's
        if self.mutation_type == 'stochastic':
            # Copy the damn list
            new_strategy = agent.strategy.copy()
            # There is a 20% chance of mutation
            if self.random.random() < 0.2:
                # Each Pi is mutated uniformly by [-d, d]
                for i in range(4):
                    mutation = self.random.uniform(-self.d, self.d)
                    new_val = new_strategy[i] + mutation
                    # Keep probabilities in [0, 1]
                    new_val = (0 if new_val < 0 else
                               1 if new_val > 1 else new_val)
                    new_strategy[i] = new_val

        # Mutate by choosing a random strategy from the list set
        elif self.mutation_type == 'fixed':
            new_strategy = random.choice(
                list(self.strategies_to_count.values()))

        elif self.mutation_type == 'gaussian_sentimental':
            # Copy the damn list
            new_strategy = agent.strategy.copy()
            # There is a 20% chance of mutation
            if self.random.random() < 0.2:
                # Each Pi is mutated by a value drawn from a gaussian
                # with mean=delta_energy
                for i in range(4):
                    mutation = self.random.normalvariate(
                        (agent.delta_energy + self.alpha()) / 14, self.d)
                    new_val = new_strategy[i] + mutation
                    # Keep probabilities in [0, 1]
                    new_val = (0 if new_val < 0 else
                               1 if new_val > 1 else new_val)
                    new_strategy[i] = new_val

        return new_strategy

    def maybe_reproduce(self, agent):
        # If we have the energy to reproduce, do so
        if agent.total_energy >= self.p:
            # Create the child
            new_strategy = self.maybe_mutate(agent)
            child = GTAgent(self.agent_idx, agent.group_id, self, new_strategy,
                            self.i_energy)
            self.agent_idx += 1

            # Set parent and child energy levels to p/2
            child.total_energy = self.p / 2
            agent.total_energy = self.p / 2

            # Place child (Remove agent argument for global child placement)
            self.schedule.add(child)
            self.grid.place_agent(child, self.get_child_location(agent))

    def step(self):
        if self.debug:
            print('\n\n==================================================')
            print('==================================================')
            print('==================================================')
            pprint(vars(self))

        # First collect data
        self.datacollector.collect(self)

        # Then check for dead agents and for new agents
        for agent in self.schedule.agent_buffer(shuffled=True):
            # First check if dead
            if self.time_to_die(agent):
                self.grid.remove_agent(agent)
                self.schedule.remove(agent)

            # Otherwise check if can reproduce
            else:
                self.maybe_reproduce(agent)

        # Finally, step each agent
        self.schedule.step()

    def check_strategy(self, agent):
        # Helper function to check which strategy an agent would count as
        def is_same(strategy, a_strategy):
            tol = self.count_tolerance
            return all(strategy[i] - tol < a_strategy[i] < strategy[i] + tol
                       for i in range(4))

        return [
            name for name, strat in self.strategies_to_count.items()
            if is_same(strat, agent.strategy)
        ]