Exemplo n.º 1
0
def legalize_mp_3elt_comparison(optree):
    """ Transform comparison on ML_Compound_FP_Format object into
        comparison on sub-fields """
    specifier = optree.specifier
    lhs = optree.get_input(0)
    rhs = optree.get_input(1)
    # TODO/FIXME: assume than multi-limb operand are normalized
    if specifier == Comparison.Equal:
        return LogicalAnd(
            Comparison(lhs.hi, rhs.hi, specifier=Comparison.Equal, precision=ML_Bool),
            LogicalAnd(
                Comparison(lhs.me, rhs.me, specifier=Comparison.Equal, precision=ML_Bool),
                Comparison(lhs.lo, rhs.lo, specifier=Comparison.Equal, precision=ML_Bool),
                precision=ML_Bool
            ),
            precision=ML_Bool
        )
    elif specifier == Comparison.NotEqual:
        return LogicalOr(
            Comparison(lhs.hi, rhs.hi, specifier=Comparison.NotEqual, precision=ML_Bool),
            LogicalOr(
                Comparison(lhs.me, rhs.me, specifier=Comparison.NotEqual, precision=ML_Bool),
                Comparison(lhs.lo, rhs.lo, specifier=Comparison.NotEqual, precision=ML_Bool),
                precision=ML_Bool
            ),
            precision=ML_Bool
        )
    elif specifier in [Comparison.LessOrEqual, Comparison.GreaterOrEqual, Comparison.Greater, Comparison.Less]:
        strict_specifier = {
            Comparison.Less: Comparison.Less,
            Comparison.Greater: Comparison.Greater,
            Comparison.LessOrEqual: Comparison.Less,
            Comparison.GreaterOrEqual: Comparison.Greater
        }[specifier]
        return LogicalOr(
            Comparison(lhs.hi, rhs.hi, specifier=strict_specifier, precision=ML_Bool),
            LogicalAnd(
                Comparison(lhs.hi, rhs.hi, specifier=Comparison.Equal, precision=ML_Bool),
                LogicalOr(
                    Comparison(lhs.me, rhs.me, specifier=strict_specifier, precision=ML_Bool),
                    LogicalAnd(
                        Comparison(lhs.me, rhs.me, specifier=Comparison.Equal, precision=ML_Bool),
                        Comparison(lhs.lo, rhs.lo, specifier=specifier, precision=ML_Bool),
                        precision=ML_Bool
                    ),
                    precision=ML_Bool
                ),
                precision=ML_Bool
            ),
            precision=ML_Bool
        )
    else:
        Log.report(Log.Error, "unsupported specifier {} in legalize_mp_2elt_comparison", specifier)
Exemplo n.º 2
0
def legalize_comp_sign(node):
    """ legalize a Test.CompSign node to a series of
        comparison with 0 and logical operation """
    # TODO/IDEA: could also be implemented by two 2 copy sign with 1.0 and valuda
    # comparison
    lhs = node.get_input(0)
    lhs_zero = Constant(0, precision=lhs.get_precision())
    rhs = node.get_input(1)
    rhs_zero = Constant(0, precision=rhs.get_precision())
    return LogicalOr(
        LogicalAnd(lhs >= lhs_zero, rhs >= rhs_zero),
        LogicalAnd(lhs <= lhs_zero, rhs <= rhs_zero),
    )
Exemplo n.º 3
0
    def generate_scheme(self):
        """ main scheme generation """
        input_precision = self.precision
        output_precision = self.precision

        # declaring main input variable
        x_interval = Interval(-10.3, 10.7)
        var_x = self.implementation.add_input_variable("x",
                                                       input_precision,
                                                       interval=x_interval)

        y_interval = Interval(-17.9, 17.2)
        var_y = self.implementation.add_input_variable("y",
                                                       input_precision,
                                                       interval=y_interval)

        z_interval = Interval(-70.3, -57.7)
        var_z = self.implementation.add_input_variable("z",
                                                       input_precision,
                                                       interval=z_interval)

        min_yz = Min(var_z, var_y)

        cst0 = Constant(42.5, tag="cst0", precision=self.precision)
        cst1 = Constant(2.5, tag="cst1", precision=self.precision)
        cst2 = Constant(12.5, tag="cst2", precision=self.precision)

        new_cst = cst0 + cst1 * cst2

        result = min_yz + new_cst

        scheme = ConditionBlock(
            LogicalAnd(
                LogicalOr(cst0 > cst1, LogicalNot(cst1 > cst0)),
                var_x > var_y,
            ), Return(result), Return(cst2))
        return scheme
Exemplo n.º 4
0
    def generate_scalar_scheme(self, vx):
        Log.set_dump_stdout(True)

        Log.report(Log.Info, "\033[33;1m generating implementation scheme \033[0m")
        if self.debug_flag:
            Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m")

        # local overloading of RaiseReturn operation
        def ExpRaiseReturn(*args, **kwords):
            kwords["arg_value"] = vx
            kwords["function_name"] = self.function_name
            if self.libm_compliant:
                return RaiseReturn(*args, precision=self.precision, **kwords)
            else:
                return Return(kwords["return_value"], precision=self.precision)

        test_nan_or_inf = Test(
            vx, specifier=Test.IsInfOrNaN, likely=False,
            debug=debug_multi, tag="nan_or_inf")
        test_nan = Test(
            vx, specifier=Test.IsNaN, debug=debug_multi, tag="is_nan_test")
        test_positive = Comparison(
            vx, 0, specifier=Comparison.GreaterOrEqual, debug=debug_multi,
            tag="inf_sign")

        test_signaling_nan = Test(
            vx, specifier=Test.IsSignalingNaN, debug=debug_multi,
            tag="is_signaling_nan")
        return_snan = Statement(
            ExpRaiseReturn(ML_FPE_Invalid, return_value=FP_QNaN(self.precision))
        )

        # return in case of infinity input
        infty_return = Statement(
            ConditionBlock(
                test_positive,
                Return(FP_PlusInfty(self.precision), precision=self.precision),
                Return(FP_PlusZero(self.precision), precision=self.precision)
            )
        )
        # return in case of specific value input (NaN or inf)
        specific_return = ConditionBlock(
            test_nan,
            ConditionBlock(
                test_signaling_nan,
                return_snan,
                Return(FP_QNaN(self.precision), precision=self.precision)
            ),
            infty_return)
        # return in case of standard (non-special) input

        # exclusion of early overflow and underflow cases
        precision_emax      = self.precision.get_emax()
        precision_max_value = S2 * S2**precision_emax
        exp_overflow_bound  = sollya.ceil(log(precision_max_value))
        early_overflow_test = Comparison(
            vx, exp_overflow_bound,
            likely=False, specifier=Comparison.Greater)
        early_overflow_return = Statement(
            ClearException() if self.libm_compliant else Statement(),
            ExpRaiseReturn(
                ML_FPE_Inexact, ML_FPE_Overflow,
                return_value=FP_PlusInfty(self.precision)
            )
        )

        precision_emin = self.precision.get_emin_subnormal()
        precision_min_value = S2 ** precision_emin
        exp_underflow_bound = floor(log(precision_min_value))

        early_underflow_test = Comparison(
            vx, exp_underflow_bound,
            likely=False, specifier=Comparison.Less)
        early_underflow_return = Statement(
            ClearException() if self.libm_compliant else Statement(),
            ExpRaiseReturn(
                ML_FPE_Inexact, ML_FPE_Underflow,
                return_value=FP_PlusZero(self.precision)))

        # constant computation
        invlog2 = self.precision.round_sollya_object(1/log(2), sollya.RN)

        interval_vx = Interval(exp_underflow_bound, exp_overflow_bound)
        interval_fk = interval_vx * invlog2
        interval_k = Interval(floor(inf(interval_fk)), sollya.ceil(sup(interval_fk)))


        log2_hi_precision = self.precision.get_field_size() - (sollya.ceil(log2(sup(abs(interval_k)))) + 2)
        Log.report(Log.Info, "log2_hi_precision: %d" % log2_hi_precision)
        invlog2_cst = Constant(invlog2, precision = self.precision)
        log2_hi = round(log(2), log2_hi_precision, sollya.RN)
        log2_lo = self.precision.round_sollya_object(log(2) - log2_hi, sollya.RN)

        # argument reduction
        unround_k = vx * invlog2
        unround_k.set_attributes(tag = "unround_k", debug = debug_multi)
        k = NearestInteger(unround_k, precision = self.precision, debug = debug_multi, tag="k")
        ik = NearestInteger(unround_k, precision = self.precision.get_integer_format(), debug = debug_multi, tag="ik")
        exact_pre_mul = (k * log2_hi)
        exact_pre_mul.set_attributes(exact= True)
        exact_hi_part = vx - exact_pre_mul
        exact_hi_part.set_attributes(exact = True, tag = "exact_hi", debug = debug_multi, prevent_optimization = True)
        exact_lo_part = - k * log2_lo
        exact_lo_part.set_attributes(tag = "exact_lo", debug = debug_multi, prevent_optimization = True)
        r =  exact_hi_part + exact_lo_part
        r.set_tag("r")
        r.set_attributes(debug = debug_multi)

        approx_interval = Interval(-log(2)/2, log(2)/2)

        approx_interval_half = approx_interval / 2
        approx_interval_split = [Interval(-log(2)/2, inf(approx_interval_half)), approx_interval_half, Interval(sup(approx_interval_half), log(2)/2)]

        # TODO: should be computed automatically
        exact_hi_interval = approx_interval
        exact_lo_interval = - interval_k * log2_lo

        opt_r = self.optimise_scheme(r, copy = {})

        tag_map = {}
        self.opt_engine.register_nodes_by_tag(opt_r, tag_map)

        cg_eval_error_copy_map = {
            vx: Variable("x", precision=self.precision, interval=interval_vx),
            tag_map["k"]: Variable("k", interval=interval_k, precision=self.precision)
        }

        #try:
        if gappa_utils.is_gappa_installed():
            eval_error = self.gappa_engine.get_eval_error_v2(
                self.opt_engine, opt_r, cg_eval_error_copy_map,
                gappa_filename=gappa_utils.generate_gappa_filename("red_arg.g"))
        else:
            eval_error = 0.0
            Log.report(Log.Warning, "gappa is not installed in this environnement")
        Log.report(Log.Info, "eval error: %s" % eval_error)


        local_ulp = sup(ulp(sollya.exp(approx_interval), self.precision))
        # FIXME refactor error_goal from accuracy
        Log.report(Log.Info, "accuracy: %s" % self.accuracy)
        if isinstance(self.accuracy, ML_Faithful):
            error_goal = local_ulp
        elif isinstance(self.accuracy, ML_CorrectlyRounded):
            error_goal = S2**-1 * local_ulp
        elif isinstance(self.accuracy, ML_DegradedAccuracyAbsolute):
            error_goal = self.accuracy.goal
        elif isinstance(self.accuracy, ML_DegradedAccuracyRelative):
            error_goal = self.accuracy.goal
        else:
            Log.report(Log.Error, "unknown accuracy: %s" % self.accuracy)


        # error_goal = local_ulp #S2**-(self.precision.get_field_size()+1)
        error_goal_approx = S2**-1 * error_goal

        Log.report(Log.Info, "\033[33;1m building mathematical polynomial \033[0m\n")
        poly_degree = max(sup(guessdegree(expm1(sollya.x)/sollya.x, approx_interval, error_goal_approx)) - 1, 2)
        init_poly_degree = poly_degree

        error_function = lambda p, f, ai, mod, t: dirtyinfnorm(f - p, ai)

        polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_estrin_scheme
        #polynomial_scheme_builder = PolynomialSchemeEvaluator.generate_horner_scheme

        MAX_NUM_ITERATION = 20

        for _ in range(MAX_NUM_ITERATION):
            Log.report(Log.Info, "attempting poly degree: %d" % poly_degree)
            precision_list = [1] + [self.precision] * (poly_degree)
            poly_object, poly_approx_error = Polynomial.build_from_approximation_with_error(expm1(sollya.x), poly_degree, precision_list, approx_interval, sollya.absolute, error_function = error_function)
            Log.report(Log.Info, "polynomial: %s " % poly_object)
            sub_poly = poly_object.sub_poly(start_index = 2)
            Log.report(Log.Info, "polynomial: %s " % sub_poly)

            Log.report(Log.Info, "poly approx error: %s" % poly_approx_error)

            Log.report(Log.Info, "\033[33;1m generating polynomial evaluation scheme \033[0m")
            pre_poly = polynomial_scheme_builder(poly_object, r, unified_precision = self.precision)
            pre_poly.set_attributes(tag = "pre_poly", debug = debug_multi)

            pre_sub_poly = polynomial_scheme_builder(sub_poly, r, unified_precision = self.precision)
            pre_sub_poly.set_attributes(tag = "pre_sub_poly", debug = debug_multi)

            poly = 1 + (exact_hi_part + (exact_lo_part + pre_sub_poly))
            poly.set_tag("poly")

            # optimizing poly before evaluation error computation
            #opt_poly = self.opt_engine.optimization_process(poly, self.precision, fuse_fma = fuse_fma)
            #opt_sub_poly = self.opt_engine.optimization_process(pre_sub_poly, self.precision, fuse_fma = fuse_fma)
            opt_poly = self.optimise_scheme(poly)
            opt_sub_poly = self.optimise_scheme(pre_sub_poly)

            # evaluating error of the polynomial approximation
            r_gappa_var        = Variable("r", precision = self.precision, interval = approx_interval)
            exact_hi_gappa_var = Variable("exact_hi", precision = self.precision, interval = exact_hi_interval)
            exact_lo_gappa_var = Variable("exact_lo", precision = self.precision, interval = exact_lo_interval)
            vx_gappa_var       = Variable("x", precision = self.precision, interval = interval_vx)
            k_gappa_var        = Variable("k", interval = interval_k, precision = self.precision)


            #print "exact_hi interval: ", exact_hi_interval

            sub_poly_error_copy_map = {
                #r.get_handle().get_node(): r_gappa_var,
                #vx.get_handle().get_node():  vx_gappa_var,
                exact_hi_part.get_handle().get_node(): exact_hi_gappa_var,
                exact_lo_part.get_handle().get_node(): exact_lo_gappa_var,
                #k.get_handle().get_node(): k_gappa_var,
            }

            poly_error_copy_map = {
                exact_hi_part.get_handle().get_node(): exact_hi_gappa_var,
                exact_lo_part.get_handle().get_node(): exact_lo_gappa_var,
            }


            if gappa_utils.is_gappa_installed():
                sub_poly_eval_error = -1.0
                gappa_sub_poly_filename = gappa_utils.generate_gappa_filename("{}_gappa_sub_poly.g".format(self.function_name))
                sub_poly_eval_error = self.gappa_engine.get_eval_error_v2(self.opt_engine, opt_sub_poly, sub_poly_error_copy_map, gappa_filename =gappa_sub_poly_filename)

                dichotomy_map = [
                    {
                        exact_hi_part.get_handle().get_node(): approx_interval_split[0],
                    },
                    {
                        exact_hi_part.get_handle().get_node(): approx_interval_split[1],
                    },
                    {
                        exact_hi_part.get_handle().get_node(): approx_interval_split[2],
                    },
                ]
                gappa_poly_filename = gappa_utils.generate_gappa_filename("gappa_poly.g")
                poly_eval_error_dico = self.gappa_engine.get_eval_error_v3(self.opt_engine, opt_poly, poly_error_copy_map, gappa_filename=gappa_poly_filename, dichotomy = dichotomy_map)

                poly_eval_error = max([sup(abs(err)) for err in poly_eval_error_dico])
            else:
                poly_eval_error = 0.0
                sub_poly_eval_error = 0.0
                Log.report(Log.Warning, "gappa is not installed in this environnement")
                Log.report(Log.Info, "stopping autonomous degree research")
                # incrementing polynomial degree to counteract initial decrementation effect
                poly_degree += 1
                break
            Log.report(Log.Info, "poly evaluation error: %s" % poly_eval_error)
            Log.report(Log.Info, "sub poly evaluation error: %s" % sub_poly_eval_error)

            global_poly_error     = None
            global_rel_poly_error = None

            for case_index in range(3):
                poly_error = poly_approx_error + poly_eval_error_dico[case_index]
                rel_poly_error = sup(abs(poly_error / sollya.exp(approx_interval_split[case_index])))
                if global_rel_poly_error == None or rel_poly_error > global_rel_poly_error:
                    global_rel_poly_error = rel_poly_error
                    global_poly_error = poly_error
            flag = error_goal > global_rel_poly_error


            if flag:
                break
            else:
                poly_degree += 1

        late_overflow_test = Comparison(
            ik, self.precision.get_emax(),
            specifier=Comparison.Greater, likely=False,
            debug=debug_multi, tag="late_overflow_test")
        overflow_exp_offset = int(self.precision.get_emax() - self.precision.get_field_size() / 2)
        cst_overflow_exp_offset = Constant(overflow_exp_offset, precision=self.precision.get_integer_format())
        diff_k = Subtraction(
            ik,
            cst_overflow_exp_offset,
            precision=self.precision.get_integer_format(),
            debug=debug_multi,
            tag="diff_k",
        )
        late_overflow_result = (ExponentInsertion(diff_k, precision = self.precision) * poly) * ExponentInsertion(cst_overflow_exp_offset, precision = self.precision)
        late_overflow_result.set_attributes(silent = False, tag = "late_overflow_result", debug = debug_multi, precision = self.precision)
        late_overflow_return = ConditionBlock(Test(late_overflow_result, specifier = Test.IsInfty, likely = False), ExpRaiseReturn(ML_FPE_Overflow, return_value = FP_PlusInfty(self.precision)), Return(late_overflow_result, precision=self.precision))

        late_underflow_test = Comparison(k, self.precision.get_emin_normal(), specifier = Comparison.LessOrEqual, likely=False, tag="late_underflow_test")
        underflow_exp_offset = 2 * self.precision.get_field_size()
        corrected_exp = Addition(
          ik,
          Constant(
            underflow_exp_offset,
            precision=self.precision.get_integer_format()
          ),
          precision=self.precision.get_integer_format(),
          tag="corrected_exp"
        )
        late_underflow_result = (ExponentInsertion(corrected_exp, precision = self.precision) * poly) * ExponentInsertion(-underflow_exp_offset, precision = self.precision)
        late_underflow_result.set_attributes(debug = debug_multi, tag = "late_underflow_result", silent = False)
        test_subnormal = Test(late_underflow_result, specifier = Test.IsSubnormal)
        late_underflow_return = Statement(ConditionBlock(test_subnormal, ExpRaiseReturn(ML_FPE_Underflow, return_value = late_underflow_result)), Return(late_underflow_result, precision=self.precision))

        twok = ExponentInsertion(ik, tag = "exp_ik", debug = debug_multi, precision = self.precision)
        #std_result = twok * ((1 + exact_hi_part * pre_poly) + exact_lo_part * pre_poly) 
        std_result = twok * poly
        std_result.set_attributes(tag = "std_result", debug = debug_multi)
        std_cond = LogicalNot(LogicalOr(late_overflow_test, late_underflow_test), likely=True)

        result_scheme = ConditionBlock(
            std_cond,
            Return(std_result, precision=self.precision),
            ConditionBlock(
                late_overflow_test,
                late_overflow_return,
                late_underflow_return,
            )
        )
        std_return = ConditionBlock(early_overflow_test, early_overflow_return, ConditionBlock(early_underflow_test, early_underflow_return, result_scheme))

        # main scheme
        Log.report(Log.Info, "\033[33;1m MDL scheme \033[0m")
        scheme = ConditionBlock(
            test_nan_or_inf,
            Statement(
                ClearException() if self.libm_compliant else Statement(),
                specific_return
            ),
            std_return
        )

        return scheme
Exemplo n.º 5
0
    def generate_scalar_scheme(self, vx, vy):
        # fixing inputs' node tag
        vx.set_attributes(tag="x")
        vy.set_attributes(tag="y")

        int_precision = self.precision.get_integer_format()

        # assuming x = m.2^e (m in [1, 2[)
        #          n, positive or null integers
        #
        # pow(x, n) = x^(y)
        #             = exp(y * log(x))
        #             = 2^(y * log2(x))
        #             = 2^(y * (log2(m) + e))
        #
        e = ExponentExtraction(vx, tag="e", precision=int_precision)
        m = MantissaExtraction(vx, tag="m", precision=self.precision)

        # approximation log2(m)

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision = self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision = self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed, language=None,
            table_getter= lambda self: self.approx_table_map)

        log_f = sollya.log(sollya.x) # /sollya.log(self.basis)



        ml_log_args = ML_GenericLog.get_default_args(precision=self.precision, basis=2)
        ml_log = ML_GenericLog(ml_log_args)
        log_table, log_table_tho, table_index_range = ml_log.generate_log_table(log_f, inv_approx_table)
        log_approx = ml_log.generate_reduced_log_split(Abs(m, precision=self.precision), log_f, inv_approx_table, log_table)

        log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision), log_approx)
        log_approx.set_attributes(tag="log_approx", debug=debug_multi)
        r = Multiplication(log_approx, vy, tag="r", debug=debug_multi)


        # 2^(y * (log2(m) + e)) = 2^(y * log2(m)) * 2^(y * e)
        #
        # log_approx = log2(Abs(m))
        # r = y * log_approx ~ y * log2(m)
        #
        # NOTES: manage cases where e is negative and
        # (y * log2(m)) AND (y * e) could cancel out
        # if e positive, whichever the sign of y (y * log2(m)) and (y * e) CANNOT
        # be of opposite signs

        # log2(m) in [0, 1[ so cancellation can occur only if e == -1
        # we split 2^x in 2^x = 2^t0 * 2^t1
        # if e < 0: t0 = y * (log2(m) + e), t1=0
        # else:     t0 = y * log2(m), t1 = y * e

        t_cond = e < 0

        # e_y ~ e * y
        e_f = Conversion(e, precision=self.precision)
        #t0 = Select(t_cond, (e_f + log_approx) * vy, Multiplication(e_f, vy), tag="t0")
        #NearestInteger(t0, precision=self.precision, tag="t0_int")

        EY = NearestInteger(e_f * vy, tag="EY", precision=self.precision)
        LY = NearestInteger(log_approx * vy, tag="LY", precision=self.precision)
        t0_int = Select(t_cond, EY + LY, EY, tag="t0_int")
        t0_frac = Select(t_cond, FMA(e_f, vy, -EY) + FMA(log_approx, vy, -LY) ,EY - t0_int, tag="t0_frac")
        #t0_frac.set_attributes(tag="t0_frac")

        ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision)
        ml_exp2 = ML_Exp2(ml_exp2_args)

        exp2_t0_frac = ml_exp2.generate_scalar_scheme(t0_frac, inline_select=True)
        exp2_t0_frac.set_attributes(tag="exp2_t0_frac", debug=debug_multi)

        exp2_t0_int = ExponentInsertion(Conversion(t0_int, precision=int_precision), precision=self.precision, tag="exp2_t0_int")

        t1 = Select(t_cond, Constant(0, precision=self.precision), r)
        exp2_t1 = ml_exp2.generate_scalar_scheme(t1, inline_select=True)
        exp2_t1.set_attributes(tag="exp2_t1", debug=debug_multi)

        result_sign = Constant(1.0, precision=self.precision) # Select(n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1)

        y_int = NearestInteger(vy, precision=self.precision)
        y_is_integer = Equal(y_int, vy)
        y_is_even = LogicalOr(
            # if y is a number (exc. inf) greater than 2**mantissa_size * 2,
            # then it is an integer multiple of 2 => even
            Abs(vy) >= 2**(self.precision.get_mantissa_size()+1),
            LogicalAnd(
                y_is_integer and Abs(vy) < 2**(self.precision.get_mantissa_size()+1),
                # we want to limit the modulo computation to an integer input
                Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 0)
            )
        )
        y_is_odd = LogicalAnd(
            LogicalAnd(
                Abs(vy) < 2**(self.precision.get_mantissa_size()+1),
                y_is_integer
            ),
            Equal(Modulo(Conversion(y_int, precision=int_precision), 2), 1)
        )


        # special cases management
        special_case_results = Statement(
            # x is sNaN OR y is sNaN
            ConditionBlock(
                LogicalOr(Test(vx, specifier=Test.IsSignalingNaN), Test(vy, specifier=Test.IsSignalingNaN)),
                Return(FP_QNaN(self.precision))
            ),
            # pow(x, ±0) is 1 if x is not a signaling NaN
            ConditionBlock(
                Test(vy, specifier=Test.IsZero),
                Return(Constant(1.0, precision=self.precision))
            ),
            # pow(±0, y) is ±∞ and signals the divideByZero exception for y an odd integer <0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy < 0)),
                Return(Select(Test(vx, specifier=Test.IsPositiveZero), FP_PlusInfty(self.precision), FP_MinusInfty(self.precision))),
            ),
            # pow(±0, −∞) is +∞ with no exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_MinusInfty(self.precision)),
            ),
            # pow(±0, +∞) is +0 with no exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is ±0 for finite y>0 an odd integer
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(y_is_odd, vy > 0)),
                Return(vx),
            ),
            # pow(−1, ±∞) is 1 with no exception
            ConditionBlock(
                LogicalAnd(Equal(vx, -1), Test(vy, specifier=Test.IsInfty)),
                Return(Constant(1.0, precision=self.precision)),
            ),
            # pow(+1, y) is 1 for any y (even a quiet NaN)
            ConditionBlock(
                vx == 1,
                Return(Constant(1.0, precision=self.precision)),
            ),
            # pow(x, +∞) is +0 for −1<x<1
            ConditionBlock(
                LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(x, +∞) is +∞ for x<−1 or for 1<x (including ±∞)
            ConditionBlock(
                LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsPositiveInfty)),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(x, −∞) is +∞ for −1<x<1
            ConditionBlock(
                LogicalAnd(Abs(vx) < 1, Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(x, −∞) is +0 for x<−1 or for 1<x (including ±∞)
            ConditionBlock(
                LogicalAnd(Abs(vx) > 1, Test(vy, specifier=Test.IsNegativeInfty)),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(+∞, y) is +0 for a number y < 0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy < 0),
                Return(FP_PlusZero(self.precision))
            ),
            # pow(+∞, y) is +∞ for a number y > 0
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsPositiveInfty), vy > 0),
                Return(FP_PlusInfty(self.precision))
            ),
            # pow(−∞, y) is −0 for finite y < 0 an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy < 0)),
                Return(FP_MinusZero(self.precision)),
            ),
            # pow(−∞, y) is −∞ for finite y > 0 an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(y_is_odd, vy > 0)),
                Return(FP_MinusInfty(self.precision)),
            ),
            # pow(−∞, y) is +0 for finite y < 0 and not an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy < 0)),
                Return(FP_PlusZero(self.precision)),
            ),
            # pow(−∞, y) is +∞ for finite y > 0 and not an odd integer
            # TODO: check y is finite
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsNegativeInfty), LogicalAnd(LogicalNot(y_is_odd), vy > 0)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is +∞ and signals the divideByZero exception for finite y<0 and not an odd integer
            # TODO: signal divideByZero exception
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy < 0)),
                Return(FP_PlusInfty(self.precision)),
            ),
            # pow(±0, y) is +0 for finite y>0 and not an odd integer
            ConditionBlock(
                LogicalAnd(Test(vx, specifier=Test.IsZero), LogicalAnd(LogicalNot(y_is_odd), vy > 0)),
                Return(FP_PlusZero(self.precision)),
            ),
        )

        # manage n=1 separately to avoid catastrophic propagation of errors
        # between log2 and exp2 to eventually compute the identity function
        # test-case #3
        result = Statement(
            special_case_results,
            # fallback default cases
            Return(result_sign * exp2_t1 * exp2_t0_int * exp2_t0_frac))
        return result
Exemplo n.º 6
0
    def generate_scheme(self):
        # We wish to compute vx / vy
        vx = self.implementation.add_input_variable(
            "x", self.precision, interval=self.input_intervals[0])
        vy = self.implementation.add_input_variable(
            "y", self.precision, interval=self.input_intervals[1])

        # maximum exponent magnitude (to avoid overflow/ underflow during
        # intermediary computations
        int_prec = self.precision.get_integer_format()
        max_exp_mag = Constant(self.precision.get_emax() - 1,
                               precision=int_prec)

        exact_ex = ExponentExtraction(vx,
                                      tag="exact_ex",
                                      precision=int_prec,
                                      debug=debug_multi)
        exact_ey = ExponentExtraction(vy,
                                      tag="exact_ey",
                                      precision=int_prec,
                                      debug=debug_multi)

        ex = Max(Min(exact_ex, max_exp_mag, precision=int_prec),
                 -max_exp_mag,
                 tag="ex",
                 precision=int_prec)
        ey = Max(Min(exact_ey, max_exp_mag, precision=int_prec),
                 -max_exp_mag,
                 tag="ey",
                 precision=int_prec)

        Attributes.set_default_rounding_mode(ML_RoundToNearest)
        Attributes.set_default_silent(True)

        # computing the inverse square root
        init_approx = None

        scaling_factor_x = ExponentInsertion(-ex,
                                             tag="sfx_ei",
                                             precision=self.precision,
                                             debug=debug_multi)
        scaling_factor_y = ExponentInsertion(-ey,
                                             tag="sfy_ei",
                                             precision=self.precision,
                                             debug=debug_multi)

        def test_interval_out_of_bound_risk(x_range, y_range):
            """ Try to determine from x and y's interval if there is a risk
                of underflow or overflow """
            div_range = abs(x_range / y_range)
            underflow_risk = sollya.inf(div_range) < S2**(
                self.precision.get_emin_normal() + 2)
            overflow_risk = sollya.sup(div_range) > S2**(
                self.precision.get_emax() - 2)
            return underflow_risk or overflow_risk

        out_of_bound_risk = (self.input_intervals[0] is None
                             or self.input_intervals[1] is None
                             ) or test_interval_out_of_bound_risk(
                                 self.input_intervals[0],
                                 self.input_intervals[1])
        Log.report(Log.Debug,
                   "out_of_bound_risk: {}".format(out_of_bound_risk))

        # scaled version of vx and vy, to avoid overflow and underflow
        if out_of_bound_risk:
            scaled_vx = vx * scaling_factor_x
            scaled_vy = vy * scaling_factor_y
            scaled_interval = MetaIntervalList(
                [MetaInterval(Interval(-2, -1)),
                 MetaInterval(Interval(1, 2))])
            scaled_vx.set_attributes(tag="scaled_vx",
                                     debug=debug_multi,
                                     interval=scaled_interval)
            scaled_vy.set_attributes(tag="scaled_vy",
                                     debug=debug_multi,
                                     interval=scaled_interval)
            seed_interval = 1 / scaled_interval
            print("seed_interval=1/{}={}".format(scaled_interval,
                                                 seed_interval))
        else:
            scaled_vx = vx
            scaled_vy = vy
            seed_interval = 1 / scaled_vy.get_interval()

        # We need a first approximation to 1 / scaled_vy
        dummy_seed = ReciprocalSeed(EmptyOperand(precision=self.precision),
                                    precision=self.precision)

        if self.processor.is_supported_operation(dummy_seed, self.language):
            init_approx = ReciprocalSeed(scaled_vy,
                                         precision=self.precision,
                                         tag="init_approx",
                                         debug=debug_multi)

        else:
            # generate tabulated version of seed
            raise NotImplementedError

        current_approx_std = init_approx
        # correctly-rounded inverse computation
        num_iteration = self.num_iter

        Attributes.unset_default_rounding_mode()
        Attributes.unset_default_silent()

        # check if inputs are zeros
        x_zero = Test(vx,
                      specifier=Test.IsZero,
                      likely=False,
                      precision=ML_Bool)
        y_zero = Test(vy,
                      specifier=Test.IsZero,
                      likely=False,
                      precision=ML_Bool)

        comp_sign = Test(vx,
                         vy,
                         specifier=Test.CompSign,
                         tag="comp_sign",
                         debug=debug_multi)

        # check if divisor is NaN
        y_nan = Test(vy, specifier=Test.IsNaN, likely=False, precision=ML_Bool)

        # check if inputs are signaling NaNs
        x_snan = Test(vx,
                      specifier=Test.IsSignalingNaN,
                      likely=False,
                      precision=ML_Bool)
        y_snan = Test(vy,
                      specifier=Test.IsSignalingNaN,
                      likely=False,
                      precision=ML_Bool)

        # check if inputs are infinities
        x_inf = Test(vx,
                     specifier=Test.IsInfty,
                     likely=False,
                     tag="x_inf",
                     precision=ML_Bool)
        y_inf = Test(vy,
                     specifier=Test.IsInfty,
                     likely=False,
                     tag="y_inf",
                     debug=debug_multi,
                     precision=ML_Bool)

        scheme = None
        gappa_vx, gappa_vy = None, None

        # initial reciprocal approximation of 1.0 / scaled_vy
        inv_iteration_list, recp_approx = compute_reduced_reciprocal(
            init_approx, scaled_vy, self.num_iter)

        recp_approx.set_attributes(tag="recp_approx", debug=debug_multi)

        # approximation of scaled_vx / scaled_vy
        yerr_last, reduced_div_approx, div_iteration_list = compute_reduced_division(
            scaled_vx, scaled_vy, recp_approx)

        eval_error_range, div_eval_error_range = self.solve_eval_error(
            init_approx, recp_approx, reduced_div_approx, scaled_vx, scaled_vy,
            inv_iteration_list, div_iteration_list, S2**-7, seed_interval)
        eval_error = sup(abs(eval_error_range))
        recp_interval = 1 / scaled_vy.get_interval() + eval_error_range
        recp_approx.set_interval(recp_interval)

        div_interval = scaled_vx.get_interval() / scaled_vy.get_interval(
        ) + div_eval_error_range
        reduced_div_approx.set_interval(div_interval)
        reduced_div_approx.set_tag("reduced_div_approx")

        if out_of_bound_risk:
            unscaled_result = scaling_div_result(reduced_div_approx, ex,
                                                 scaling_factor_y,
                                                 self.precision)

            subnormal_result = subnormalize_result(recp_approx,
                                                   reduced_div_approx, ex, ey,
                                                   yerr_last, self.precision)
        else:
            unscaled_result = reduced_div_approx
            subnormal_result = reduced_div_approx

        x_inf_or_nan = Test(vx, specifier=Test.IsInfOrNaN, likely=False)
        y_inf_or_nan = Test(vy,
                            specifier=Test.IsInfOrNaN,
                            likely=False,
                            tag="y_inf_or_nan",
                            debug=debug_multi)

        # generate IEEE exception raising only of libm-compliant
        # mode is enabled
        enable_raise = self.libm_compliant

        # managing special cases
        # x inf and y inf
        pre_scheme = ConditionBlock(
            x_inf_or_nan,
            ConditionBlock(
                x_inf,
                ConditionBlock(
                    y_inf_or_nan,
                    Statement(
                        # signaling NaNs raise invalid operation flags
                        ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                        if enable_raise else Statement(),
                        Return(FP_QNaN(self.precision)),
                    ),
                    ConditionBlock(comp_sign,
                                   Return(FP_MinusInfty(self.precision)),
                                   Return(FP_PlusInfty(self.precision)))),
                Statement(
                    ConditionBlock(x_snan, Raise(ML_FPE_Invalid))
                    if enable_raise else Statement(),
                    Return(FP_QNaN(self.precision)))),
            ConditionBlock(
                x_zero,
                ConditionBlock(
                    LogicalOr(y_zero, y_nan, precision=ML_Bool),
                    Statement(
                        ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                        if enable_raise else Statement(),
                        Return(FP_QNaN(self.precision))), Return(vx)),
                ConditionBlock(
                    y_inf_or_nan,
                    ConditionBlock(
                        y_inf,
                        Return(
                            Select(comp_sign, FP_MinusZero(self.precision),
                                   FP_PlusZero(self.precision))),
                        Statement(
                            ConditionBlock(y_snan, Raise(ML_FPE_Invalid))
                            if enable_raise else Statement(),
                            Return(FP_QNaN(self.precision)))),
                    ConditionBlock(
                        y_zero,
                        Statement(
                            Raise(ML_FPE_DivideByZero)
                            if enable_raise else Statement(),
                            ConditionBlock(
                                comp_sign,
                                Return(FP_MinusInfty(self.precision)),
                                Return(FP_PlusInfty(self.precision)))),
                        # managing numerical value result cases
                        Statement(
                            recp_approx,
                            reduced_div_approx,
                            ConditionBlock(
                                Test(unscaled_result,
                                     specifier=Test.IsSubnormal,
                                     likely=False),
                                # result is subnormal
                                Statement(
                                    # inexact flag should have been raised when computing yerr_last
                                    # ConditionBlock(
                                    #    Comparison(
                                    #        yerr_last, 0,
                                    #        specifier=Comparison.NotEqual, likely=True),
                                    #    Statement(Raise(ML_FPE_Inexact, ML_FPE_Underflow))
                                    #),
                                    Return(subnormal_result), ),
                                # result is normal
                                Statement(
                                    # inexact flag should have been raised when computing yerr_last
                                    #ConditionBlock(
                                    #    Comparison(
                                    #        yerr_last, 0,
                                    #        specifier=Comparison.NotEqual, likely=True),
                                    #    Raise(ML_FPE_Inexact)
                                    #),
                                    Return(unscaled_result))),
                        )))))
        # managing rounding mode save and restore
        # to ensure intermediary computations are performed in round-to-nearest
        # clearing exception before final computation

        #rnd_mode = GetRndMode()
        #scheme = Statement(
        #    rnd_mode,
        #    SetRndMode(ML_RoundToNearest),
        #    yerr_last,
        #    SetRndMode(rnd_mode),
        #    unscaled_result,
        #    ClearException(),
        #    pre_scheme
        #)

        scheme = pre_scheme

        return scheme
Exemplo n.º 7
0
    def generic_atan2_generate(self, _vx, vy=None):
        """ if vy is None, compute atan(_vx), else compute atan2(vy / vx) """

        if vy is None:
            # approximation
            # if abs_vx <= 1.0 then atan(abx_vx) is directly approximated
            # if abs_vx > 1.0 then atan(abs_vx) = pi/2 - atan(1 / abs_vx)
            #
            # for vx >= 0, atan(vx) = atan(abs_vx)
            #
            # for vx < 0, atan(vx) = -atan(abs_vx) for vx < 0
            #                      = -pi/2 + atan(1 / abs_vx)
            vx = _vx
            sign_cond = vx < 0
            abs_vx = Select(vx < 0, -vx, vx, tag="abs_vx", debug=debug_multi)
            bound_cond = abs_vx > 1
            inv_abs_vx = 1 / abs_vx

            # condition to select subtraction
            cond = LogicalOr(LogicalAnd(vx < 0, LogicalNot(bound_cond)),
                             vx > 1,
                             tag="cond",
                             debug=debug_multi)

            # reduced argument
            red_vx = Select(bound_cond,
                            inv_abs_vx,
                            abs_vx,
                            tag="red_vx",
                            debug=debug_multi)

            offset = None
        else:
            # bound_cond is True iff Abs(vy / _vx) > 1.0
            bound_cond = Abs(vy) > Abs(_vx)
            bound_cond.set_attributes(tag="bound_cond", debug=debug_multi)
            # vx and vy are of opposite signs
            #sign_cond = (_vx * vy) < 0
            # using cast to int(signed) and bitwise xor
            # to determine if _vx and vy are of opposite sign rapidly
            fast_sign_cond = BitLogicXor(
                TypeCast(_vx, precision=self.precision.get_integer_format()),
                TypeCast(vy, precision=self.precision.get_integer_format()),
                precision=self.precision.get_integer_format()) < 0
            # sign_cond = (_vx * vy) < 0
            sign_cond = fast_sign_cond
            sign_cond.set_attributes(tag="sign_cond", debug=debug_multi)

            # condition to select subtraction
            # TODO: could be accelerated if LogicalXor existed
            slow_cond = LogicalOr(
                LogicalAnd(sign_cond,
                           LogicalNot(bound_cond)),  # 1 < (vy / _vx) < 0
                LogicalAnd(bound_cond,
                           LogicalNot(sign_cond)),  # (vy / _vx) > 1
                tag="cond",
                debug=debug_multi)
            cond = slow_cond

            numerator = Select(bound_cond,
                               _vx,
                               vy,
                               tag="numerator",
                               debug=debug_multi)
            denominator = Select(bound_cond,
                                 vy,
                                 _vx,
                                 tag="denominator",
                                 debug=debug_multi)
            # reduced argument
            red_vx = Abs(numerator) / Abs(denominator)
            red_vx.set_attributes(tag="red_vx", debug=debug_multi)

            offset = Select(
                _vx > 0,
                Constant(0, precision=self.precision),
                # vx < 0
                Select(
                    sign_cond,
                    # vy > 0
                    Constant(sollya.pi, precision=self.precision),
                    Constant(-sollya.pi, precision=self.precision),
                    precision=self.precision),
                precision=self.precision,
                tag="offset")

        approx_fct = sollya.atan(sollya.x)

        if self.method == "piecewise":
            sign_vx = Select(cond,
                             -1,
                             1,
                             precision=self.precision,
                             tag="sign_vx",
                             debug=debug_multi)

            cst_sign = Select(sign_cond,
                              -1,
                              1,
                              precision=self.precision,
                              tag="cst_sign",
                              debug=debug_multi)
            cst = cst_sign * Select(
                bound_cond, sollya.pi / 2, 0, precision=self.precision)
            cst.set_attributes(tag="cst", debug=debug_multi)

            bound_low = 0.0
            bound_high = 1.0
            num_intervals = self.num_sub_intervals
            error_threshold = S2**-(self.precision.get_mantissa_size() + 8)

            approx, eval_error = piecewise_approximation(
                approx_fct,
                red_vx,
                self.precision,
                bound_low=bound_low,
                bound_high=bound_high,
                max_degree=None,
                num_intervals=num_intervals,
                error_threshold=error_threshold,
                odd=True)

            result = cst + sign_vx * approx
            result.set_attributes(tag="result",
                                  precision=self.precision,
                                  debug=debug_multi)

        elif self.method == "single":
            approx_interval = Interval(0, 1.0)
            # determining the degree of the polynomial approximation
            poly_degree_range = sollya.guessdegree(
                approx_fct / sollya.x, approx_interval,
                S2**-(self.precision.get_field_size() + 2))
            poly_degree = int(sollya.sup(poly_degree_range)) + 4
            Log.report(Log.Info, "poly_degree={}".format(poly_degree))

            # arctan is an odd function, so only odd coefficient must be non-zero
            poly_degree_list = list(range(1, poly_degree + 1, 2))
            poly_object, poly_error = Polynomial.build_from_approximation_with_error(
                approx_fct, poly_degree_list,
                [1] + [self.precision.get_sollya_object()] *
                (len(poly_degree_list) - 1), approx_interval)

            odd_predicate = lambda index, _: ((index - 1) % 4 != 0)
            even_predicate = lambda index, _: (index != 1 and
                                               (index - 1) % 4 == 0)

            poly_odd_object = poly_object.sub_poly_cond(odd_predicate,
                                                        offset=1)
            poly_even_object = poly_object.sub_poly_cond(even_predicate,
                                                         offset=1)

            sollya.settings.display = sollya.hexadecimal
            Log.report(Log.Info, "poly_error: {}".format(poly_error))
            Log.report(Log.Info, "poly_odd: {}".format(poly_odd_object))
            Log.report(Log.Info, "poly_even: {}".format(poly_even_object))

            poly_odd = PolynomialSchemeEvaluator.generate_horner_scheme(
                poly_odd_object, abs_vx)
            poly_odd.set_attributes(tag="poly_odd", debug=debug_multi)
            poly_even = PolynomialSchemeEvaluator.generate_horner_scheme(
                poly_even_object, abs_vx)
            poly_even.set_attributes(tag="poly_even", debug=debug_multi)
            exact_sum = poly_odd + poly_even
            exact_sum.set_attributes(tag="exact_sum", debug=debug_multi)

            # poly_even should be (1 + poly_even)
            result = vx + vx * exact_sum
            result.set_attributes(tag="result",
                                  precision=self.precision,
                                  debug=debug_multi)

        else:
            raise NotImplementedError

        if not offset is None:
            result = result + offset

        std_scheme = Statement(Return(result))
        scheme = std_scheme

        return scheme
Exemplo n.º 8
0
    def generate_scalar_scheme(self, vx, n):
        # fixing inputs' node tag
        vx.set_attributes(tag="x")
        n.set_attributes(tag="n")

        int_precision = self.precision.get_integer_format()

        # assuming x = m.2^e (m in [1, 2[)
        #          n, positive or null integers
        #
        # rootn(x, n) = x^(1/n)
        #             = exp(1/n * log(x))
        #             = 2^(1/n * log2(x))
        #             = 2^(1/n * (log2(m) + e))
        #

        # approximation log2(m)

        # retrieving processor inverse approximation table
        dummy_var = Variable("dummy", precision=self.precision)
        dummy_div_seed = ReciprocalSeed(dummy_var, precision=self.precision)
        inv_approx_table = self.processor.get_recursive_implementation(
            dummy_div_seed,
            language=None,
            table_getter=lambda self: self.approx_table_map)

        log_f = sollya.log(sollya.x)  # /sollya.log(self.basis)

        use_reciprocal = False

        # non-scaled vx used to compute vx^1
        unmodified_vx = vx

        is_subnormal = Test(vx, specifier=Test.IsSubnormal, tag="is_subnormal")
        exp_correction_factor = self.precision.get_mantissa_size()
        mantissa_factor = Constant(2**exp_correction_factor,
                                   tag="mantissa_factor")
        vx = Select(is_subnormal, vx * mantissa_factor, vx, tag="corrected_vx")

        m = MantissaExtraction(vx, tag="m", precision=self.precision)
        e = ExponentExtraction(vx, tag="e", precision=int_precision)
        e = Select(is_subnormal,
                   e - exp_correction_factor,
                   e,
                   tag="corrected_e")

        ml_log_args = ML_GenericLog.get_default_args(precision=self.precision,
                                                     basis=2)
        ml_log = ML_GenericLog(ml_log_args)
        log_table, log_table_tho, table_index_range = ml_log.generate_log_table(
            log_f, inv_approx_table)
        log_approx = ml_log.generate_reduced_log_split(
            Abs(m, precision=self.precision), log_f, inv_approx_table,
            log_table)
        # floating-point version of n
        n_f = Conversion(n, precision=self.precision, tag="n_f")
        inv_n = Division(Constant(1, precision=self.precision), n_f)

        log_approx = Select(Equal(vx, 0), FP_MinusInfty(self.precision),
                            log_approx)
        log_approx.set_attributes(tag="log_approx", debug=debug_multi)
        if use_reciprocal:
            r = Multiplication(log_approx, inv_n, tag="r", debug=debug_multi)
        else:
            r = Division(log_approx, n_f, tag="r", debug=debug_multi)

        # e_n ~ e / n
        e_f = Conversion(e, precision=self.precision, tag="e_f")
        if use_reciprocal:
            e_n = Multiplication(e_f, inv_n, tag="e_n")
        else:
            e_n = Division(e_f, n_f, tag="e_n")
        error_e_n = FMA(e_n, -n_f, e_f, tag="error_e_n")
        e_n_int = NearestInteger(e_n, precision=self.precision, tag="e_n_int")
        pre_e_n_frac = e_n - e_n_int
        pre_e_n_frac.set_attributes(tag="pre_e_n_frac")
        e_n_frac = pre_e_n_frac + error_e_n * inv_n
        e_n_frac.set_attributes(tag="e_n_frac")

        ml_exp2_args = ML_Exp2.get_default_args(precision=self.precision)
        ml_exp2 = ML_Exp2(ml_exp2_args)
        exp2_r = ml_exp2.generate_scalar_scheme(r, inline_select=True)
        exp2_r.set_attributes(tag="exp2_r", debug=debug_multi)

        exp2_e_n_frac = ml_exp2.generate_scalar_scheme(e_n_frac,
                                                       inline_select=True)
        exp2_e_n_frac.set_attributes(tag="exp2_e_n_frac", debug=debug_multi)

        exp2_e_n_int = ExponentInsertion(Conversion(e_n_int,
                                                    precision=int_precision),
                                         precision=self.precision,
                                         tag="exp2_e_n_int")

        n_is_even = Equal(Modulo(n, 2), 0, tag="n_is_even", debug=debug_multi)
        n_is_odd = LogicalNot(n_is_even, tag="n_is_odd")
        result_sign = Select(
            n_is_odd, CopySign(vx, Constant(1.0, precision=self.precision)), 1)

        # managing n == -1
        if self.expand_div:
            ml_division_args = ML_Division.get_default_args(
                precision=self.precision, input_formats=[self.precision] * 2)
            ml_division = ML_Division(ml_division_args)
            self.division_implementation = ml_division.implementation
            self.division_implementation.set_scheme(
                ml_division.generate_scheme())
            ml_division_fct = self.division_implementation.get_function_object(
            )
        else:
            ml_division_fct = Division

        # manage n=1 separately to avoid catastrophic propagation of errors
        # between log2 and exp2 to eventually compute the identity function
        # test-case #3
        result = ConditionBlock(
            LogicalOr(LogicalOr(Test(vx, specifier=Test.IsNaN), Equal(n, 0)),
                      LogicalAnd(n_is_even, vx < 0)),
            Return(FP_QNaN(self.precision)),
            Statement(
                ConditionBlock(
                    Equal(n, -1, tag="n_is_mone"),
                    #Return(Division(Constant(1, precision=self.precision), unmodified_vx, tag="div_res", precision=self.precision)),
                    Return(
                        ml_division_fct(Constant(1, precision=self.precision),
                                        unmodified_vx,
                                        tag="div_res",
                                        precision=self.precision)),
                ),
                ConditionBlock(
                    # rootn( ±inf, n) is +∞ for even n< 0.
                    Test(vx, specifier=Test.IsInfty),
                    Statement(
                        ConditionBlock(
                            n < 0,
                            #LogicalAnd(n_is_odd, n < 0),
                            Return(
                                Select(Test(vx,
                                            specifier=Test.IsPositiveInfty),
                                       Constant(FP_PlusZero(self.precision),
                                                precision=self.precision),
                                       Constant(FP_MinusZero(self.precision),
                                                precision=self.precision),
                                       precision=self.precision)),
                            Return(vx),
                        ), ),
                ),
                ConditionBlock(
                    # rootn(±0, n) is ±∞ for odd n < 0.
                    LogicalAnd(LogicalAnd(n_is_odd, n < 0),
                               Equal(vx, 0),
                               tag="n_is_odd_and_neg"),
                    Return(
                        Select(Test(vx, specifier=Test.IsPositiveZero),
                               Constant(FP_PlusInfty(self.precision),
                                        precision=self.precision),
                               Constant(FP_MinusInfty(self.precision),
                                        precision=self.precision),
                               precision=self.precision)),
                ),
                ConditionBlock(
                    # rootn( ±0, n) is +∞ for even n< 0.
                    LogicalAnd(LogicalAnd(n_is_even, n < 0), Equal(vx, 0)),
                    Return(FP_PlusInfty(self.precision))),
                ConditionBlock(
                    # rootn(±0, n) is +0 for even n > 0.
                    LogicalAnd(n_is_even, Equal(vx, 0)),
                    Return(vx)),
                ConditionBlock(
                    Equal(n, 1), Return(unmodified_vx),
                    Return(result_sign * exp2_r * exp2_e_n_int *
                           exp2_e_n_frac))))
        return result
Exemplo n.º 9
0
    def generate_scheme(self):
        # declaring target and instantiating optimization engine

        vx = self.implementation.add_input_variable("x", self.precision)
        vx.set_attributes(precision=self.precision,
                          tag="vx",
                          debug=debug_multi)
        Log.set_dump_stdout(True)

        Log.report(Log.Info,
                   "\033[33;1m Generating implementation scheme \033[0m")
        if self.debug_flag:
            Log.report(Log.Info, "\033[31;1m debug has been enabled \033[0;m")

        C0 = Constant(0, precision=self.precision)

        C0_plus = Constant(FP_PlusZero(self.precision))
        C0_minus = Constant(FP_MinusZero(self.precision))

        def local_test(specifier, tag):
            """ Local wrapper to generate Test operations """
            return Test(vx,
                        specifier=specifier,
                        likely=False,
                        debug=debug_multi,
                        tag="is_%s" % tag,
                        precision=ML_Bool)

        test_NaN = local_test(Test.IsNaN, "is_NaN")
        test_inf = local_test(Test.IsInfty, "is_Inf")
        test_NaN_or_Inf = local_test(Test.IsInfOrNaN, "is_Inf_Or_Nan")

        test_negative = Comparison(vx,
                                   C0,
                                   specifier=Comparison.Less,
                                   debug=debug_multi,
                                   tag="is_Negative",
                                   precision=ML_Bool,
                                   likely=False)
        test_NaN_or_Neg = LogicalOr(test_NaN, test_negative, precision=ML_Bool)

        test_std = LogicalNot(LogicalOr(test_NaN_or_Inf,
                                        test_negative,
                                        precision=ML_Bool,
                                        likely=False),
                              precision=ML_Bool,
                              likely=True)

        test_zero = Comparison(vx,
                               C0,
                               specifier=Comparison.Equal,
                               likely=False,
                               debug=debug_multi,
                               tag="Is_Zero",
                               precision=ML_Bool)

        return_NaN_or_neg = Statement(Return(FP_QNaN(self.precision)))
        return_inf = Statement(Return(FP_PlusInfty(self.precision)))

        return_PosZero = Return(C0_plus)
        return_NegZero = Return(C0_minus)

        NR_init = ReciprocalSquareRootSeed(vx,
                                           precision=self.precision,
                                           tag="sqrt_seed",
                                           debug=debug_multi)

        result = compute_sqrt(vx,
                              NR_init,
                              int(self.num_iter),
                              precision=self.precision)

        return_non_std = ConditionBlock(
            test_NaN_or_Neg, return_NaN_or_neg,
            ConditionBlock(
                test_inf, return_inf,
                ConditionBlock(test_zero, return_PosZero, return_NegZero)))
        return_std = Return(result)

        scheme = ConditionBlock(test_std, return_std, return_non_std)
        return scheme
Exemplo n.º 10
0
def booth_radix4_multiply(lhs, rhs, pos_bit_heap, neg_bit_heap):
    """ Compute the multiplication @p lhs x @p rhs using radix 4 Booth
        recoding and drop the generated partial product in @p
        pos_bit_heap and @p neg_bit_heap based on their sign """
    # booth recoded partial product for n-th digit
    # is based on digit from n-1 to n+1
    #    (n+1) | (n) | (n-1) |  PP  |
    #    ------|-----|-------|------|
    #      0   |  0  |   0   |  +0  |
    #      0   |  0  |   1   |  +X  |
    #      0   |  1  |   0   |  +X  |
    #      0   |  1  |   1   |  +2x |
    #      1   |  0  |   0   |  -2X |
    #      1   |  0  |   1   |  -X  |
    #      1   |  1  |   0   |  -X  |
    #      1   |  1  |   1   |  +0  |
    #    ------|-----|-------|------|
    assert lhs.get_precision().get_bit_size() >= 2

    # lhs is the recoded operand
    # RECODING DIGITS
    # first recoded digit is padded right by 0
    first_digit = Concatenation(SubSignalSelection(
        lhs, 0, 1, precision=ML_StdLogicVectorFormat(2)),
                                Constant(0, precision=ML_StdLogic),
                                precision=ML_StdLogicVectorFormat(3),
                                debug=debug_std,
                                tag="booth_digit_0")
    digit_list = [(first_digit, 0)]

    for digit_index in range(2, lhs.get_precision().get_bit_size(), 2):
        if digit_index + 1 < lhs.get_precision().get_bit_size():
            # digits exist completely in lhs
            digit = SubSignalSelection(lhs,
                                       digit_index - 1,
                                       digit_index + 1,
                                       tag="booth_digit_%d" % digit_index,
                                       debug=debug_std)
        else:
            # MSB padding required
            sign_ext = Constant(0, precision=ML_StdLogic) if not (
                lhs.get_precision().get_signed()) else BitSelection(
                    lhs,
                    lhs.get_precision().get_bit_size() - 1)
            digit = Concatenation(sign_ext,
                                  SubSignalSelection(lhs, digit_index - 1,
                                                     digit_index),
                                  precision=ML_StdLogicVectorFormat(3),
                                  debug=debug_std,
                                  tag="booth_digit_%d" % digit_index)
        digit_list.append((digit, digit_index))
    # if lhs size is a mutiple of two and it is unsigned
    # than an extra digit must be generated to ensure a positive result
    if lhs.get_precision().get_bit_size() % 2 == 0 and not (
            lhs.get_precision().get_signed()):
        digit_index = lhs.get_precision().get_bit_size() - 1
        digit = Concatenation(Constant(0,
                                       precision=ML_StdLogicVectorFormat(2)),
                              BitSelection(lhs, digit_index),
                              precision=ML_StdLogicVectorFormat(3),
                              debug=debug_std,
                              tag="booth_digit_%d" % (digit_index + 1))
        digit_list.append((digit, digit_index + 1))

    def DCV(value):
        """ Digit Constante Value """
        return Constant(value, precision=ML_StdLogicVectorFormat(3))

    # PARTIAL PRODUCT GENERATION
    # Radix-4 booth recoding requires the following Partial Products
    # -2.rhs, -rhs, 0, rhs and 2.rhs
    # Negative PP are obtained by 1's complement of the value correctly shifted
    # adding a positive one to the LSB (inserted separately) and assuming
    # MSB digit has a negative weight
    for digit, index in digit_list:
        pp_zero = LogicalOr(Equal(digit, DCV(0), precision=ML_Bool),
                            Equal(digit, DCV(7), precision=ML_Bool),
                            precision=ML_Bool)
        pp_shifted = LogicalOr(Equal(digit, DCV(3), precision=ML_Bool),
                               Equal(digit, DCV(4), precision=ML_Bool),
                               precision=ML_Bool)
        # excluding zero case
        pp_neg_bit = BitSelection(digit, 2)
        pp_neg = equal_to(pp_neg_bit, 1)
        pp_neg_lsb_carryin = Select(LogicalAnd(pp_neg, LogicalNot(pp_zero)),
                                    Constant(1, precision=ML_StdLogic),
                                    Constant(0, precision=ML_StdLogic),
                                    tag="pp_%d_neg_lsb_carryin" % index,
                                    debug=debug_std)

        # LSB digit
        lsb_pp_digit = Select(pp_shifted,
                              Constant(0, precision=ML_StdLogic),
                              BitSelection(rhs, 0),
                              precision=ML_StdLogic)
        lsb_local_pp = Select(pp_zero,
                              Constant(0, precision=ML_StdLogic),
                              Select(pp_neg,
                                     BitLogicNegate(lsb_pp_digit),
                                     lsb_pp_digit,
                                     precision=ML_StdLogic),
                              debug=debug_std,
                              tag="lsb_local_pp_%d" % index,
                              precision=ML_StdLogic)
        pos_bit_heap.insert_bit(index, lsb_local_pp)
        pos_bit_heap.insert_bit(index, pp_neg_lsb_carryin)

        # other digits
        rhs_size = rhs.get_precision().get_bit_size()
        for k in range(1, rhs_size):
            pp_digit = Select(pp_shifted,
                              BitSelection(rhs, k - 1),
                              BitSelection(rhs, k),
                              precision=ML_StdLogic)
            local_pp = Select(pp_zero,
                              Constant(0, precision=ML_StdLogic),
                              Select(pp_neg,
                                     BitLogicNegate(pp_digit),
                                     pp_digit,
                                     precision=ML_StdLogic),
                              debug=debug_std,
                              tag="local_pp_%d_%d" % (index, k),
                              precision=ML_StdLogic)
            pos_bit_heap.insert_bit(index + k, local_pp)
        # MSB digit
        msb_pp_digit = pp_digit = Select(
            pp_shifted,
            BitSelection(rhs, rhs_size - 1),
            # TODO: fix for signed rhs
            Constant(0, precision=ML_StdLogic)
            if not (rhs.get_precision().get_signed()) else BitSelection(
                rhs, rhs_size - 1),
            precision=ML_StdLogic)
        msb_pp = Select(pp_zero,
                        Constant(0, precision=ML_StdLogic),
                        Select(pp_neg,
                               BitLogicNegate(msb_pp_digit),
                               msb_pp_digit,
                               precision=ML_StdLogic),
                        debug=debug_std,
                        tag="msb_pp_%d" % (index),
                        precision=ML_StdLogic)
        if rhs.get_precision().get_signed():
            neg_bit_heap.insert_bit(index + rhs_size, msb_pp)
        else:
            pos_bit_heap.insert_bit(index + rhs_size, msb_pp)
            # MSB negative digit,
            # 'rhs_size + index) is the position of the MSB digit of rhs shifted by 1
            # we add +1 to get to the sign position
            neg_bit_heap.insert_bit(index + rhs_size + 1, pp_neg_lsb_carryin)
Exemplo n.º 11
0
 def LogicalXor(a, b):
     return LogicalOr(LogicalAnd(a, LogicalNot(b)), LogicalAnd(LogicalNot(a), b))
Exemplo n.º 12
0
    def generate_scheme(self):
        int_precision = self.precision.get_integer_format()
        # We wish to compute vx / vy
        vx = self.implementation.add_input_variable("x", self.precision, interval=self.input_intervals[0])
        vy = self.implementation.add_input_variable("y", self.precision, interval=self.input_intervals[1])
        if self.mode is FULL_MODE:
            quo = self.implementation.add_input_variable("quo", ML_Pointer_Format(int_precision))

        i = Variable("i", precision=int_precision, var_type=Variable.Local)
        q = Variable("q", precision=int_precision, var_type=Variable.Local)

        CI = lambda v: Constant(v, precision=int_precision)
        CF = lambda v: Constant(v, precision=self.precision)

        vx_subnormal = Test(vx, specifier=Test.IsSubnormal, tag="vx_subnormal")
        vy_subnormal = Test(vy, specifier=Test.IsSubnormal, tag="vy_subnormal")

        DELTA_EXP = self.precision.get_mantissa_size()
        scale_factor = Constant(2.0**DELTA_EXP, precision=self.precision)
        inv_scale_factor = Constant(2.0**-DELTA_EXP, precision=self.precision)

        normalized_vx = Select(vx_subnormal, vx * scale_factor, vx, tag="scaled_vx")
        normalized_vy = Select(vy_subnormal, vy * scale_factor, vy, tag="scaled_vy")

        real_ex = ExponentExtraction(vx, tag="real_ex", precision=int_precision)
        real_ey = ExponentExtraction(vy, tag="real_ey", precision=int_precision)

        # if real_e<x/y> is +1023 then it may Overflow in -real_ex for ExponentInsertion
        # which only supports downto -1022 before falling into subnormal numbers (which are
        # not supported by ExponentInsertion)
        real_ex_h0 = real_ex / 2
        real_ex_h1 = real_ex - real_ex_h0

        real_ey_h0 = real_ey / 2
        real_ey_h1 = real_ey - real_ey_h0

        EI = lambda v: ExponentInsertion(v, precision=self.precision)

        mx = Abs((vx * EI(-real_ex_h0)) * EI(-real_ex_h1), tag="mx")
        my = Abs((vy * EI(-real_ey_h0)) * EI(-real_ey_h1), tag="pre_my")

        # scale_ey is used to regain the unscaling of mx in the first loop
        # if real_ey >= real_ex, the first loop is never executed
        # so a different scaling is required
        mx_unscaling = Select(real_ey < real_ex, real_ey, real_ex)
        ey_half0 = (mx_unscaling) / 2
        ey_half1 = (mx_unscaling) - ey_half0

        scale_ey_half0 = ExponentInsertion(ey_half0, precision=self.precision, tag="scale_ey_half0")
        scale_ey_half1 = ExponentInsertion(ey_half1, precision=self.precision, tag="scale_ey_half1")

        # if only vy is subnormal we want to normalize it
        #normal_cond = LogicalAnd(vy_subnormal, LogicalNot(vx_subnormal))
        normal_cond = vy_subnormal #LogicalAnd(vy_subnormal, LogicalNot(vx_subnormal))
        my = Select(normal_cond, Abs(MantissaExtraction(vy * scale_factor)), my, tag="my")


        # vx / vy = vx * 2^-ex * 2^(ex-ey) / (vy * 2^-ey)
        # vx % vy

        post_mx = Variable("post_mx", precision=self.precision, var_type=Variable.Local)

        # scaling for half comparison
        VY_SCALING = Select(vy_subnormal, 1.0, 0.5, precision=self.precision)
        VX_SCALING = Select(vy_subnormal, 2.0, 1.0, precision=self.precision)

        def LogicalXor(a, b):
            return LogicalOr(LogicalAnd(a, LogicalNot(b)), LogicalAnd(LogicalNot(a), b))

        rem_sign = Select(vx < 0, CF(-1), CF(1), precision=self.precision, tag="rem_sign")
        quo_sign = Select(LogicalXor(vx <0, vy < 0), CI(-1), CI(1), precision=int_precision, tag="quo_sign")

        loop_watchdog = Variable("loop_watchdog", precision=ML_Int32, var_type=Variable.Local)

        loop = Statement(
            real_ex, real_ey, mx, my, loop_watchdog,
            ReferenceAssign(loop_watchdog, 5000),
            ReferenceAssign(q, CI(0)),
            Loop(
                ReferenceAssign(i, CI(0)), i < (real_ex - real_ey),
                Statement(
                    ReferenceAssign(i, i+CI(1)),
                    ReferenceAssign(q, ((q << 1) + Select(mx >= my, CI(1), CI(0))).modify_attributes(tag="step1_q")),
                    ReferenceAssign(mx, (CF(2) * (mx - Select(mx >= my, my, CF(0)))).modify_attributes(tag="step1_mx")),
                    # loop watchdog
                    ReferenceAssign(loop_watchdog, loop_watchdog - 1),
                    ConditionBlock(loop_watchdog < 0, Return(-1)),
                ),
            ),
            # unscaling remainder
            ReferenceAssign(mx, ((mx * scale_ey_half0) * scale_ey_half1).modify_attributes(tag="scaled_rem")),
            ReferenceAssign(my, ((my * scale_ey_half0) * scale_ey_half1).modify_attributes(tag="scaled_rem_my")),
            Loop(
                Statement(), (my > Abs(vy)),
                Statement(
                    ReferenceAssign(q, ((q << 1) + Select(mx >= Abs(my), CI(1), CI(0))).modify_attributes(tag="step2_q")),
                    ReferenceAssign(mx, (mx - Select(mx >= Abs(my), Abs(my), CF(0))).modify_attributes(tag="step2_mx")),
                    ReferenceAssign(my, (my * 0.5).modify_attributes(tag="step2_my")),
                    # loop watchdog
                    ReferenceAssign(loop_watchdog, loop_watchdog - 1),
                    ConditionBlock(loop_watchdog < 0, Return(-1)),
                ),
            ),
            ReferenceAssign(q, q << 1),
            Loop(
                ReferenceAssign(i, CI(0)), mx > Abs(vy),
                Statement(
                    ReferenceAssign(q, (q + Select(mx > Abs(vy), CI(1), CI(0))).modify_attributes(tag="step3_q")),
                    ReferenceAssign(mx, (mx - Select(mx > Abs(vy), Abs(vy), CF(0))).modify_attributes(tag="step3_mx")),
                    # loop watchdog
                    ReferenceAssign(loop_watchdog, loop_watchdog - 1),
                    ConditionBlock(loop_watchdog < 0, Return(-1)),
                ),
            ),
            ReferenceAssign(q, q + Select(mx >= Abs(vy), CI(1), CI(0))),
            ReferenceAssign(mx, (mx - Select(mx >= Abs(vy), Abs(vy), CF(0))).modify_attributes(tag="pre_half_mx")),
            ConditionBlock(
                # actual comparison is mx > | abs(vy * 0.5) | to avoid rounding effect when
                # vy is subnormal we mulitply both side by 2.0**60
                ((mx * VX_SCALING) > Abs(vy * VY_SCALING)).modify_attributes(tag="half_test"),
                Statement(
                    ReferenceAssign(q, q + CI(1)),
                    ReferenceAssign(mx, (mx - Abs(vy)))
                )
            ),
            ConditionBlock(
                # if the remainder is exactly half the dividend
                # we need to make sure the quotient is even
                LogicalAnd(
                    Equal(mx * VX_SCALING, Abs(vy * VY_SCALING)),
                    Equal(Modulo(q, CI(2)), CI(1)),
                ),
                Statement(
                    ReferenceAssign(q, q + CI(1)),
                    ReferenceAssign(mx, (mx - Abs(vy)))
                )
            ),
            ReferenceAssign(mx, rem_sign * mx),
            ReferenceAssign(q,
                Modulo(TypeCast(q, precision=self.precision.get_unsigned_integer_format()), Constant(2**self.quotient_size, precision=self.precision.get_unsigned_integer_format()), tag="mod_q")
            ),
            ReferenceAssign(q, quo_sign * q),
        )

        # NOTES: Warning QuotientReturn must always preceeds RemainderReturn
        if self.mode is QUOTIENT_MODE:
            #
            QuotientReturn = Return
            RemainderReturn = lambda _: Statement()
        elif self.mode is REMAINDER_MODE:
            QuotientReturn = lambda _: Statement()
            RemainderReturn = Return
        elif self.mode is FULL_MODE:
            QuotientReturn = lambda v: ReferenceAssign(Dereference(quo, precision=int_precision), v) 
            RemainderReturn = Return
        else:
            raise NotImplemented

        # quotient invalid value
        QUO_INVALID_VALUE = 0

        mod_scheme = Statement(
            # x or y is NaN, a NaN is returned
            ConditionBlock(
                LogicalOr(Test(vx, specifier=Test.IsNaN), Test(vy, specifier=Test.IsNaN)),
                Statement(
                    QuotientReturn(QUO_INVALID_VALUE),
                    RemainderReturn(FP_QNaN(self.precision))
                ),
            ),
            #
            ConditionBlock(
                Test(vy, specifier=Test.IsZero),
                Statement(
                    QuotientReturn(QUO_INVALID_VALUE),
                    RemainderReturn(FP_QNaN(self.precision))
                ),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsZero),
                Statement(
                    QuotientReturn(0),
                    RemainderReturn(vx)
                ),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsInfty),
                Statement(
                    QuotientReturn(QUO_INVALID_VALUE),
                    RemainderReturn(FP_QNaN(self.precision))
                )
            ),
            ConditionBlock(
                Test(vy, specifier=Test.IsInfty),
                Statement(
                    QuotientReturn(0),
                    RemainderReturn(vx),
                )
            ),
            ConditionBlock(
                Abs(vx) < Abs(vy * 0.5),
                Statement(
                    QuotientReturn(0),
                    RemainderReturn(vx),
                )
            ),
            ConditionBlock(
                Equal(vx, vy),
                Statement(
                    QuotientReturn(1),
                    # 0 with the same sign as x
                    RemainderReturn(vx - vx),
                ),
            ),
            ConditionBlock(
                Equal(vx, -vy),
                Statement(
                    # quotient is -1
                    QuotientReturn(-1),
                    # 0 with the same sign as x
                    RemainderReturn(vx - vx),
                ),
            ),
            loop,
            QuotientReturn(q),
            RemainderReturn(mx),
        )

        quo_scheme = Statement(
            # x or y is NaN, a NaN is returned
            ConditionBlock(
                LogicalOr(Test(vx, specifier=Test.IsNaN), Test(vy, specifier=Test.IsNaN)),
                Return(QUO_INVALID_VALUE),
            ),
            #
            ConditionBlock(
                Test(vy, specifier=Test.IsZero),
                Return(QUO_INVALID_VALUE),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsZero),
                Return(0),
            ),
            ConditionBlock(
                Test(vx, specifier=Test.IsInfty),
                Return(QUO_INVALID_VALUE),
            ),
            ConditionBlock(
                Test(vy, specifier=Test.IsInfty),
                Return(QUO_INVALID_VALUE),
            ),
            ConditionBlock(
                Abs(vx) < Abs(vy * 0.5),
                Return(0),
            ),
            ConditionBlock(
                Equal(vx, vy),
                Return(1),
            ),
            ConditionBlock(
                Equal(vx, -vy),
                Return(-1),
            ),
            loop,
            Return(q),

        )

        return mod_scheme