def ppo_pendulum(ctxt=None, seed=1):
    """Train PPO with InvertedDoublePendulum-v2 environment.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    set_seed(seed)
    env = MetaRLEnv(env_name='InvertedDoublePendulum-v2')

    runner = LocalRunner(ctxt)

    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[64, 64],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = PPO(env_spec=env.spec,
               policy=policy,
               value_function=value_function,
               max_path_length=100,
               discount=0.99,
               center_adv=False)

    runner.setup(algo, env)
    runner.train(n_epochs=100, batch_size=10000)
def test_maml_trpo_pendulum():
    """Test PPO with Pendulum environment."""
    env = MetaRLEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )
    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32))

    rollouts_per_task = 5
    max_path_length = 100

    runner = LocalRunner(snapshot_config)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=5,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1)

    runner.setup(algo, env)
    last_avg_ret = runner.train(n_epochs=5,
                                batch_size=rollouts_per_task * max_path_length)

    assert last_avg_ret > -5

    env.close()
def test_maml_trpo_dummy_named_env():
    """Test with dummy environment that has env_name."""
    env = MetaRLEnv(
        normalize(DummyMultiTaskBoxEnv(), expected_action_scale=10.))
    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )
    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32))

    rollouts_per_task = 2
    max_path_length = 100

    runner = LocalRunner(snapshot_config)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=5,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1)

    runner.setup(algo, env)
    runner.train(n_epochs=2, batch_size=rollouts_per_task * max_path_length)
Exemplo n.º 4
0
def maml_trpo_metaworld_ml10(ctxt, seed, epochs, rollouts_per_task,
                             meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = MetaRLEnv(
        normalize(mwb.ML10.get_train_tasks(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(100, 100),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_path_length = 100

    test_task_names = mwb.ML10.get_test_tasks().all_task_names
    test_tasks = [
        MetaRLEnv(
            normalize(mwb.ML10.from_task(task), expected_action_scale=10.))
        for task in test_task_names
    ]
    test_sampler = EnvPoolSampler(test_tasks)

    meta_evaluator = MetaEvaluator(test_task_sampler=test_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=len(test_task_names))

    runner = LocalRunner(ctxt)
    algo = MAMLTRPO(env=env,
                    policy=policy,
                    value_function=value_function,
                    max_path_length=max_path_length,
                    meta_batch_size=meta_batch_size,
                    discount=0.99,
                    gae_lambda=1.,
                    inner_lr=0.1,
                    num_grad_updates=1,
                    meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
Exemplo n.º 5
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = MetaRLEnv(normalize(gym.make('InvertedDoublePendulum-v2')))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec)
def maml_vpg_half_cheetah_dir(ctxt, seed, epochs, rollouts_per_task,
                              meta_batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        rollouts_per_task (int): Number of rollouts per epoch per task
            for training.
        meta_batch_size (int): Number of tasks sampled per batch.

    """
    set_seed(seed)
    env = MetaRLEnv(normalize(HalfCheetahDirEnv(), expected_action_scale=10.))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    max_path_length = 100

    task_sampler = SetTaskSampler(lambda: MetaRLEnv(
        normalize(HalfCheetahDirEnv(), expected_action_scale=10.)))

    meta_evaluator = MetaEvaluator(test_task_sampler=task_sampler,
                                   max_path_length=max_path_length,
                                   n_test_tasks=1,
                                   n_test_rollouts=10)

    runner = LocalRunner(ctxt)
    algo = MAMLVPG(env=env,
                   policy=policy,
                   value_function=value_function,
                   max_path_length=max_path_length,
                   meta_batch_size=meta_batch_size,
                   discount=0.99,
                   gae_lambda=1.,
                   inner_lr=0.1,
                   num_grad_updates=1,
                   meta_evaluator=meta_evaluator)

    runner.setup(algo, env)
    runner.train(n_epochs=epochs,
                 batch_size=rollouts_per_task * max_path_length)
Exemplo n.º 7
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = MetaRLEnv(
         normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec,
                                                    hidden_sizes=(32, 32))
def ppo_metarl_pytorch(ctxt, env_id, seed):
    """Create metarl PyTorch PPO model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the
            snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    runner = LocalRunner(ctxt)

    env = MetaRLEnv(normalize(gym.make(env_id)))

    policy = PyTorch_GMP(env.spec,
                         hidden_sizes=(32, 32),
                         hidden_nonlinearity=torch.tanh,
                         output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    policy_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)),
                                        policy,
                                        max_optimization_epochs=10,
                                        minibatch_size=64)

    vf_optimizer = OptimizerWrapper((torch.optim.Adam, dict(lr=2.5e-4)),
                                    value_function,
                                    max_optimization_epochs=10,
                                    minibatch_size=64)

    algo = PyTorch_PPO(env_spec=env.spec,
                       policy=policy,
                       value_function=value_function,
                       policy_optimizer=policy_optimizer,
                       vf_optimizer=vf_optimizer,
                       max_path_length=hyper_parameters['max_path_length'],
                       discount=0.99,
                       gae_lambda=0.95,
                       center_adv=True,
                       lr_clip_range=0.2)

    runner.setup(algo, env)
    runner.train(n_epochs=hyper_parameters['n_epochs'],
                 batch_size=hyper_parameters['batch_size'])
def mtppo_metaworld_mt10(ctxt, seed, epochs, batch_size, n_worker):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        batch_size (int): Number of environment steps in one batch.
        n_worker (int): The number of workers the sampler should use.

    """
    set_seed(seed)
    tasks = mwb.MT10.get_train_tasks().all_task_names
    envs = []
    for task in tasks:
        envs.append(normalize(MetaRLEnv(mwb.MT10.from_task(task))))
    env = MultiEnvWrapper(envs,
                          sample_strategy=round_robin_strategy,
                          mode='vanilla')

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_sizes=(64, 64),
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = PPO(env_spec=env.spec,
               policy=policy,
               value_function=value_function,
               max_path_length=128,
               discount=0.99,
               gae_lambda=0.95,
               center_adv=True,
               lr_clip_range=0.2)

    runner = LocalRunner(ctxt)
    runner.setup(algo, env, n_workers=n_worker)
    runner.train(n_epochs=epochs, batch_size=batch_size)
Exemplo n.º 10
0
    def setup_method(self):
        """Setup method which is called before every test."""
        self._env = MetaRLEnv(gym.make('InvertedDoublePendulum-v2'))
        self._runner = LocalRunner(snapshot_config)

        self._policy = GaussianMLPPolicy(env_spec=self._env.spec,
                                         hidden_sizes=[64, 64],
                                         hidden_nonlinearity=torch.tanh,
                                         output_nonlinearity=None)
        self._params = {
            'env_spec': self._env.spec,
            'policy': self._policy,
            'value_function':
            GaussianMLPValueFunction(env_spec=self._env.spec),
            'max_path_length': 100,
            'discount': 0.99,
        }
Exemplo n.º 11
0
def trpo_pendulum_ray_sampler(ctxt=None, seed=1):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.

    """
    # Since this is an example, we are running ray in a reduced state.
    # One can comment this line out in order to run ray at full capacity
    ray.init(memory=52428800,
             object_store_memory=78643200,
             ignore_reinit_error=True,
             log_to_driver=False,
             include_webui=False)
    deterministic.set_seed(seed)
    env = MetaRLEnv(env_name='InvertedDoublePendulum-v2')

    runner = LocalRunner(ctxt)

    policy = GaussianMLPPolicy(env.spec,
                               hidden_sizes=[32, 32],
                               hidden_nonlinearity=torch.tanh,
                               output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = TRPO(env_spec=env.spec,
                policy=policy,
                value_function=value_function,
                max_path_length=100,
                discount=0.99,
                center_adv=False)

    runner.setup(algo, env, sampler_cls=RaySampler)
    runner.train(n_epochs=100, batch_size=1024)
Exemplo n.º 12
0
 def setup_method(self):
     """Setup method which is called before every test."""
     self.env = MetaRLEnv(
         normalize(HalfCheetahDirEnv(), expected_action_scale=10.))
     self.policy = GaussianMLPPolicy(
         env_spec=self.env.spec,
         hidden_sizes=(64, 64),
         hidden_nonlinearity=torch.tanh,
         output_nonlinearity=None,
     )
     self.value_function = GaussianMLPValueFunction(env_spec=self.env.spec,
                                                    hidden_sizes=(32, 32))
     self.algo = MAMLPPO(env=self.env,
                         policy=self.policy,
                         value_function=self.value_function,
                         max_path_length=100,
                         meta_batch_size=5,
                         discount=0.99,
                         gae_lambda=1.,
                         inner_lr=0.1,
                         num_grad_updates=1)
Exemplo n.º 13
0
def mtppo_metaworld_ml1_push(ctxt, seed, epochs, batch_size):
    """Set up environment and algorithm and run the task.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
            configuration used by LocalRunner to create the snapshotter.
        seed (int): Used to seed the random number generator to produce
            determinism.
        epochs (int): Number of training epochs.
        batch_size (int): Number of environment steps in one batch.

    """
    set_seed(seed)
    env = MetaRLEnv(normalize(mwb.ML1.get_train_tasks('push-v1')))

    policy = GaussianMLPPolicy(
        env_spec=env.spec,
        hidden_nonlinearity=torch.tanh,
        output_nonlinearity=None,
    )

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = PPO(env_spec=env.spec,
               policy=policy,
               value_function=value_function,
               max_path_length=128,
               discount=0.99,
               gae_lambda=0.95,
               center_adv=True,
               lr_clip_range=0.2)

    runner = LocalRunner(ctxt)
    runner.setup(algo, env)
    runner.train(n_epochs=epochs, batch_size=batch_size)
Exemplo n.º 14
0
def trpo_metarl_pytorch(ctxt, env_id, seed):
    """Create metarl PyTorch TRPO model and training.

    Args:
        ctxt (metarl.experiment.ExperimentContext): The experiment
                configuration used by LocalRunner to create the
                snapshotter.
        env_id (str): Environment id of the task.
        seed (int): Random positive integer for the trial.

    """
    deterministic.set_seed(seed)

    runner = LocalRunner(ctxt)

    env = MetaRLEnv(normalize(gym.make(env_id)))

    policy = PyTorch_GMP(env.spec,
                         hidden_sizes=hyper_parameters['hidden_sizes'],
                         hidden_nonlinearity=torch.tanh,
                         output_nonlinearity=None)

    value_function = GaussianMLPValueFunction(env_spec=env.spec,
                                              hidden_sizes=(32, 32),
                                              hidden_nonlinearity=torch.tanh,
                                              output_nonlinearity=None)

    algo = PyTorch_TRPO(env_spec=env.spec,
                        policy=policy,
                        value_function=value_function,
                        max_path_length=hyper_parameters['max_path_length'],
                        discount=hyper_parameters['discount'],
                        gae_lambda=hyper_parameters['gae_lambda'])

    runner.setup(algo, env)
    runner.train(n_epochs=hyper_parameters['n_epochs'],
                 batch_size=hyper_parameters['batch_size'])