Exemplo n.º 1
0
def calc_linear_least_squares(
        points: list[Point]) -> Optional[ApproximationResult]:
    sx = sxx = sy = sxy = 0
    number_of_points = len(points)

    for point in points:
        sx += point.x
        sxx += point.x**2
        sy += point.y
        sxy += point.x * point.y

    determinant = sxx * number_of_points - sx * sx
    if determinant == 0:
        return None

    a = (sxy * number_of_points - sx * sy) / determinant
    b = (sxx * sy - sx * sxy) / determinant

    def func(x):
        return a * x + b

    func_text = '{:.3f} * x + {:.3f}'.format(a, b)

    measure = calc_deviation_measure(func, points)
    standard_deviation = calc_standard_deviation(func, points)

    return ApproximationResult(func, [a, b],
                               points,
                               measure,
                               standard_deviation,
                               func_text=func_text,
                               description='Линейная аппроксимация')
Exemplo n.º 2
0
def calc_logarithmic_least_squares(
        points: list[Point]) -> Optional[ApproximationResult]:
    sx = sxx = sy = sxy = 0
    number_of_points = len(points)

    for point in points:
        if point.x <= 0 or point.y <= 0:
            return None
        sx += log(point.x)
        sxx += log(point.x)**2
        sy += point.y
        sxy += log(point.x) * point.y

    determinant = sxx * number_of_points - sx * sx
    if determinant == 0:
        return None

    a = (sxy * number_of_points - sx * sy) / determinant
    b = (sxx * sy - sx * sxy) / determinant

    def func(x):
        return a * log(x) + b

    func_text = '{:.3f} * log(x) + {:.3f}'.format(a, b)

    measure = calc_deviation_measure(func, points)
    standard_deviation = calc_standard_deviation(func, points)

    return ApproximationResult(func, [a, b],
                               points,
                               measure,
                               standard_deviation,
                               func_text=func_text,
                               description='Логарифмическая аппроксимация')
Exemplo n.º 3
0
def calc_power_least_squares(
        points: list[Point]) -> Optional[ApproximationResult]:
    sx = sxx = sy = sxy = 0
    number_of_points = len(points)

    # X = ln(x)
    # Y = ln(y)
    for point in points:
        if point.x <= 0:
            return None
        sx += log(point.x)
        sxx += log(point.x)**2
        sy += log(point.y)
        sxy += log(point.x) * log(point.y)

    determinant = sxx * number_of_points - sx * sx
    if determinant == 0:
        return None

    b = (sxy * number_of_points - sx * sy) / determinant
    a = (sxx * sy - sx * sxy) / determinant

    a1 = exp(a)  # a = ln(a1)
    b1 = b

    def func(x):
        return a1 * x**b1

    func_text = '{:.3f} * x^{:.3f}'.format(a1, b1)

    measure = calc_deviation_measure(func, points)
    standard_deviation = calc_standard_deviation(func, points)

    return ApproximationResult(func, [a1, b1],
                               points,
                               measure,
                               standard_deviation,
                               func_text=func_text,
                               description='Степенная аппроксимация')
Exemplo n.º 4
0
def calc_exponential_least_squares(
        points: list[Point]) -> Optional[ApproximationResult]:
    sx = sxx = sy = sxy = 0
    number_of_points = len(points)

    for point in points:
        sx += point.x
        sxx += point.x**2
        if point.y <= 0:
            return None
        sy += log(point.y)
        sxy += point.x * log(point.y)

    determinant = sxx * number_of_points - sx * sx
    if determinant == 0:
        return None

    b = (sxy * number_of_points - sx * sy) / determinant
    a = (sxx * sy - sx * sxy) / determinant

    a1 = exp(a)  # a = ln(a1)
    b1 = b

    def func(x):
        return a1 * exp(b1 * x)

    func_text = '{:.3f} * e^({:.3f} * x)'.format(a1, b1)

    measure = calc_deviation_measure(func, points)
    standard_deviation = calc_standard_deviation(func, points)

    return ApproximationResult(func, [a1, b1],
                               points,
                               measure,
                               standard_deviation,
                               func_text=func_text,
                               description='Экспоненциальная аппроксимация')
Exemplo n.º 5
0
def calc_quadratic_least_squares(
        points: list[Point]) -> Optional[ApproximationResult]:
    sx = sy = sx2 = sx3 = sx4 = sxy = sx2y = 0
    number_of_points = len(points)

    for x, y in points:
        sx += x
        sx2 += x**2
        sx3 += x**3
        sx4 += x**4
        sy += y
        sxy += x * y
        sx2y += x**2 * y

    matrix = [[number_of_points, sx, sx2, sy], [sx, sx2, sx3, sxy],
              [sx2, sx3, sx4, sx2y]]

    decision_count, decisions, _ = solve_sle(matrix)
    if decision_count != Decision.SINGLE:
        return None
    a0, a1, a2 = decisions

    def func(arg):
        return a0 + a1 * arg + a2 * arg**2

    func_text = '{:3f} + {:.3f} * x + {:.3f} * x^2'.format(a0, a1, a2)

    measure = calc_deviation_measure(func, points)
    standard_deviation = calc_standard_deviation(func, points)

    return ApproximationResult(func, [a0, a1, a2],
                               points,
                               measure,
                               standard_deviation,
                               func_text=func_text,
                               description='Квадратичная аппроксимация')