Exemplo n.º 1
0
lamb.Assign(1.0)
lamb[0] = 50.
lambda_c = mfem.PWConstCoefficient(lamb)
mu = mfem.Vector(mesh.attributes.Max())
mu.Assign(1.0);
mu[0] = 50.0
mu_c = mfem.PWConstCoefficient(mu)

# 8. Set up the linear form b(.) which corresponds to the right-hand side of
#    the FEM linear system. In this example, the linear form b(.) consists
#    only of the terms responsible for imposing weakly the Dirichlet
#    boundary conditions, over the attributes marked in 'dir_bdr'. The
#    values for the Dirichlet boundary condition are taken from the
#    VectorFunctionCoefficient 'x_init' which in turn is based on the
#    function 'InitDisplacement'.
b = mfem.LinearForm(fespace)
print('r.h.s ...')
integrator = mfem.DGElasticityDirichletLFIntegrator(init_x, lambda_c, mu_c, alpha, kappa)
b.AddBdrFaceIntegrator(integrator , dir_bdr)
b.Assemble()

# 9. Set up the bilinear form a(.,.) on the DG finite element space
#    corresponding to the linear elasticity integrator with coefficients
#    lambda and mu as defined above. The additional interior face integrator
#    ensures the weak continuity of the displacement field. The additional
#    boundary face integrator works together with the boundary integrator
#    added to the linear form b(.) to impose weakly the Dirichlet boundary
#    conditions.
a = mfem.BilinearForm(fespace)
a.AddDomainIntegrator(mfem.ElasticityIntegrator(lambda_c, mu_c))
Exemplo n.º 2
0
#    interior faces.

velocity = velocity_coeff(dim)
inflow = inflow_coeff()
u0 = u0_coeff()

m = mfem.BilinearForm(fes)
m.AddDomainIntegrator(mfem.MassIntegrator())
k = mfem.BilinearForm(fes)
k.AddDomainIntegrator(mfem.ConvectionIntegrator(velocity, -1.0))
k.AddInteriorFaceIntegrator(
      mfem.TransposeIntegrator(mfem.DGTraceIntegrator(velocity, 1.0, -0.5)))
k.AddBdrFaceIntegrator(
      mfem.TransposeIntegrator(mfem.DGTraceIntegrator(velocity, 1.0, -0.5)))

b = mfem.LinearForm(fes)
b.AddBdrFaceIntegrator(
      mfem.BoundaryFlowIntegrator(inflow, velocity, -1.0, -0.5))

m.Assemble()
m.Finalize()
skip_zeros = 0
k.Assemble(skip_zeros)
k.Finalize(skip_zeros)
b.Assemble()

# 7. Define the initial conditions, save the corresponding grid function to
#    a file 
u = mfem.GridFunction(fes)
u.ProjectCoefficient(u0)
Exemplo n.º 3
0
def run(order=1,
        static_cond=False,
        meshfile=def_meshfile,
        visualization=False):

    mesh = mfem.Mesh(meshfile, 1, 1)
    dim = mesh.Dimension()

    #   3. Refine the mesh to increase the resolution. In this example we do
    #      'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
    #      largest number that gives a final mesh with no more than 50,000
    #      elements.
    ref_levels = int(np.floor(
        np.log(50000. / mesh.GetNE()) / np.log(2.) / dim))
    for x in range(ref_levels):
        mesh.UniformRefinement()

    #5. Define a finite element space on the mesh. Here we use vector finite
    #   elements, i.e. dim copies of a scalar finite element space. The vector
    #   dimension is specified by the last argument of the FiniteElementSpace
    #   constructor. For NURBS meshes, we use the (degree elevated) NURBS space
    #   associated with the mesh nodes.
    if order > 0:
        fec = mfem.H1_FECollection(order, dim)
    elif mesh.GetNodes():
        fec = mesh.GetNodes().OwnFEC()
        prinr("Using isoparametric FEs: " + str(fec.Name()))
    else:
        order = 1
        fec = mfem.H1_FECollection(order, dim)
    fespace = mfem.FiniteElementSpace(mesh, fec)
    print('Number of finite element unknowns: ' + str(fespace.GetTrueVSize()))
    # 5. Determine the list of true (i.e. conforming) essential boundary dofs.
    #    In this example, the boundary conditions are defined by marking all
    #    the boundary attributes from the mesh as essential (Dirichlet) and
    #    converting them to a list of true dofs.
    ess_tdof_list = mfem.intArray()
    if mesh.bdr_attributes.Size() > 0:
        ess_bdr = mfem.intArray([1] * mesh.bdr_attributes.Max())
        ess_bdr = mfem.intArray(mesh.bdr_attributes.Max())
        ess_bdr.Assign(1)
        fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list)
    #6. Set up the linear form b(.) which corresponds to the right-hand side of
    #   the FEM linear system, which in this case is (1,phi_i) where phi_i are
    #   the basis functions in the finite element fespace.
    b = mfem.LinearForm(fespace)
    one = mfem.ConstantCoefficient(1.0)
    b.AddDomainIntegrator(mfem.DomainLFIntegrator(one))
    b.Assemble()
    #7. Define the solution vector x as a finite element grid function
    #   corresponding to fespace. Initialize x with initial guess of zero,
    #   which satisfies the boundary conditions.
    x = mfem.GridFunction(fespace)
    x.Assign(0.0)
    #8. Set up the bilinear form a(.,.) on the finite element space
    #   corresponding to the Laplacian operator -Delta, by adding the Diffusion
    #   domain integrator.
    a = mfem.BilinearForm(fespace)
    a.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
    #9. Assemble the bilinear form and the corresponding linear system,
    #   applying any necessary transformations such as: eliminating boundary
    #   conditions, applying conforming constraints for non-conforming AMR,
    #   static condensation, etc.
    if static_cond: a.EnableStaticCondensation()
    a.Assemble()

    A = mfem.OperatorPtr()
    B = mfem.Vector()
    X = mfem.Vector()

    a.FormLinearSystem(ess_tdof_list, x, b, A, X, B)
    print("Size of linear system: " + str(A.Height()))

    # 10. Solve
    AA = mfem.OperatorHandle2SparseMatrix(A)
    M = mfem.GSSmoother(AA)
    mfem.PCG(AA, M, B, X, 1, 200, 1e-12, 0.0)

    # 11. Recover the solution as a finite element grid function.
    a.RecoverFEMSolution(X, b, x)
    # 12. Save the refined mesh and the solution. This output can be viewed later
    #     using GLVis: "glvis -m refined.mesh -g sol.gf".
    mesh.Print('refined.mesh', 8)
    x.Save('sol.gf', 8)

    #13. Send the solution by socket to a GLVis server.
    if (visualization):
        sol_sock = mfem.socketstream("localhost", 19916)
        sol_sock.precision(8)
        sol_sock.send_solution(mesh, x)
Exemplo n.º 4
0
block_offsets = intArray([0, dimR, dimW])
block_offsets.PartialSum()

k = mfem.ConstantCoefficient(1.0)

fcoeff = fFunc(dim)
fnatcoeff = f_natural()
gcoeff = gFunc()
ucoeff = uFunc_ex(dim)
pcoeff = pFunc_ex()

x = mfem.BlockVector(block_offsets)
rhs = mfem.BlockVector(block_offsets)

fform = mfem.LinearForm()
fform.Update(R_space, rhs.GetBlock(0), 0)
fform.AddDomainIntegrator(mfem.VectorFEDomainLFIntegrator(fcoeff))
fform.AddBoundaryIntegrator(mfem.VectorFEBoundaryFluxLFIntegrator(fnatcoeff))
fform.Assemble()

gform = mfem.LinearForm()
gform.Update(W_space, rhs.GetBlock(1), 0)
gform.AddDomainIntegrator(mfem.DomainLFIntegrator(gcoeff))
gform.Assemble()

mVarf = mfem.BilinearForm(R_space)
bVarf = mfem.MixedBilinearForm(R_space, W_space)

mVarf.AddDomainIntegrator(mfem.VectorFEMassIntegrator(k))
mVarf.Assemble()
Exemplo n.º 5
0
print('\n'.join(["nNumber of Unknowns", 
                 " Trial space,     X0   : " + str(s0) +
                 " (order " + str(trial_order) + ")",
                 " Interface space, Xhat : " + str(s1) +
                 " (order " + str(trace_order) + ")",
                 " Test space,      Y    : " + str(s_test) +
                 " (order " + str(test_order) + ")"]))
x = mfem.BlockVector(offsets)
b = mfem.BlockVector(offsets)
x.Assign(0.0)

# 6. Set up the linear form F(.) which corresponds to the right-hand side of
#    the FEM linear system, which in this case is (f,phi_i) where f=1.0 and
#    phi_i are the basis functions in the test finite element fespace.
one = mfem.ConstantCoefficient(1.0)
F = mfem.LinearForm(test_space);
F.AddDomainIntegrator(mfem.DomainLFIntegrator(one))
F.Assemble();

# 7. Set up the mixed bilinear form for the primal trial unknowns, B0,
#    the mixed bilinear form for the interfacial unknowns, Bhat,
#    the inverse stiffness matrix on the discontinuous test space, Sinv,
#    and the stiffness matrix on the continuous trial space, S0.
ess_bdr = mfem.intArray(mesh.bdr_attributes.Max())
ess_bdr.Assign(1)

B0 = mfem.MixedBilinearForm(x0_space,test_space);
B0.AddDomainIntegrator(mfem.DiffusionIntegrator(one))
B0.Assemble()
B0.EliminateTrialDofs(ess_bdr, x.GetBlock(x0_var), F)
B0.Finalize()