Exemplo n.º 1
0
    def addObjects(self):

        self.root = self.addRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, 0, 1])
        self.sizeRef = self.addLoc("sizeRef", self.root, vTemp)
        pm.delete(self.sizeRef.getShapes())
        attribute.lockAttribute(self.sizeRef)
Exemplo n.º 2
0
def create_channel_master_node(name):
    """Create a new channel master node

    Args:
        name (str): name of the nodes

    Returns:
        str: name of the channel master node
    """

    # Create data node (render sphere for outliner "icon")
    shp = cmds.createNode("renderSphere")
    cmds.setAttr("{}.radius".format(shp), 0)
    cmds.setAttr("{}.isHistoricallyInteresting".format(shp), 0)
    cmds.setAttr("{}.v".format(shp), 0)

    # Rename data node
    node = cmds.listRelatives(shp, p=True)[0]
    node = cmds.rename(node, string.normalize(name))

    cmds.addAttr(node, ln=__TAG__, at="bool", dv=True)
    cmds.setAttr("{}.{}".format(node, __TAG__), k=False, l=True)
    cmds.addAttr(node, ln="data", dt="string")

    attribute.lockAttribute(pm.PyNode(node))

    # init data
    cmds.setAttr("{}.data".format(node),
                 cmu.init_channel_master_config_data(),
                 type="string")
    return node
    def addObjects(self):
        self.root = self.add2DRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, 0, 1])
        self.sizeRef = self.addLoc("sizeRef", self.root, vTemp)
        pm.delete(self.sizeRef.getShapes())
        attribute.lockAttribute(self.sizeRef)

        # Now we need to show the range of the controls with
        # template curves.
        arrow_curves = [
            self.addTCurve(self.getName("up"),
                           datatypes.Vector(0, 0, 0), self.root),
            self.addTCurve(self.getName("right"),
                           datatypes.Vector(0, 0, -90), self.root),
            self.addTCurve(self.getName("down"),
                           datatypes.Vector(0, 0, 180), self.root),
            self.addTCurve(self.getName("left"),
                           datatypes.Vector(0, 0, 90), self.root)
        ]

        for [arrow_curve, param] in zip(arrow_curves, ["ty_positive",
                                                       "tx_positive",
                                                       "ty_negative",
                                                       "tx_negative"]):
            sh = arrow_curve.getShape()
            sh.template.set(1)
            self.root.attr(param) >> sh.visibility
            self.root.addChild(sh, add=True, shape=True)
        pm.delete(arrow_curves)
Exemplo n.º 4
0
    def finalize(self):
        """Finalize and clean the rig builing."""
        # locking the attributes for all the ctl parents that are not ctl
        # itself.
        for t in self.transform2Lock:
            attribute.lockAttribute(t)

        return
Exemplo n.º 5
0
    def addBlade(self, name, parentPos, parentDir):
        """Add a blade object to the guide.

        This mehod can initialize the object or draw it.
        Blade object is a 3points curve to define a plan in the guide.

        Args:
            name (str): Local name of the element.
            parentPos (dagNode): The parent of the element.
            parentDir (dagNode): The direction constraint of the element.

        Returns:
            dagNode:  The created blade curve.

        """
        if name not in self.blades.keys():
            self.blades[name] = vector.Blade(
                transform.getTransformFromPos(datatypes.Vector(0, 0, 0)))
            offset = False
        else:
            offset = True

        blade = icon.guideBladeIcon(parent=parentPos,
                                    name=self.getName(name),
                                    lenX=.5,
                                    color=[0, 0, 1],
                                    m=self.blades[name].transform)
        aim_cns = applyop.aimCns(blade,
                                 parentDir,
                                 axis="xy",
                                 wupType=2,
                                 wupVector=[0, 1, 0],
                                 wupObject=self.root,
                                 maintainOffset=offset)
        pnt_cns = pm.pointConstraint(parentPos, blade)

        aim_cns.isHistoricallyInteresting.set(False)
        pnt_cns.isHistoricallyInteresting.set(False)

        offsetAttr = attribute.addAttribute(blade, "bladeRollOffset", "float",
                                            aim_cns.attr("offsetX").get())
        pm.connectAttr(offsetAttr, aim_cns.attr("offsetX"))
        scaleAttr = attribute.addAttribute(blade,
                                           "bladeScale",
                                           "float",
                                           1,
                                           minValue=0.1,
                                           maxValue=100)
        for axis in "xyz":
            pm.connectAttr(scaleAttr, blade.attr("s{}".format(axis)))
        attribute.lockAttribute(blade,
                                attributes=[
                                    "tx", "ty", "tz", "rx", "ry", "rz", "sx",
                                    "sy", "sz", "v", "ro"
                                ])

        return blade
Exemplo n.º 6
0
    def addObjects(self):

        self.root = self.addRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, 0, 1])
        self.sizeRef = self.addLoc("sizeRef", self.root, vTemp)
        pm.delete(self.sizeRef.getShapes())
        attribute.lockAttribute(self.sizeRef)
        self.lookat = self.addLoc("lookat", self.root, vTemp)

        v = transform.getTranslation(self.root)
        self.sliding_surface = self.addSliderSurface("sliding_surface",
                                                     self.root, v)
    def addObjects(self):

        self.root = self.addRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, 0, 1])
        self.sizeRef = self.addLoc("sizeRef", self.root, vTemp)
        pm.delete(self.sizeRef.getShapes())
        attribute.lockAttribute(self.sizeRef)

        vTemp = transform.getOffsetPosition(self.root, [0, 0, 0])
        self.pivot = self.addLoc("pivot", self.root, vTemp)

        centers = [self.root, self.pivot]
        self.dispcrv = self.addDispCurve("crv", centers)
Exemplo n.º 8
0
def create_layer_node(name, affectedElements):
    """Create a transform node that contain the layer information.

    Args:
        name (str): layer name
        affectedElements (dagNode list): Elements affected by the layer.
                Only Mesh type is supported

    Returns:
        dagNode: layer node
    """

    fullName = name + "_crankLayer"

    # create node
    if pm.ls(fullName):
        pm.displayWarning("{} already exist".format(fullName))
        return
    layer_node = pm.createNode("transform", n=fullName, p=None, ss=True)
    attribute.lockAttribute(layer_node)
    # add attrs
    attribute.addAttribute(layer_node, CRANK_TAG, "bool", False, keyable=False)
    # this attribute will help to track the edit state to speed up the callback
    attribute.addAttribute(layer_node,
                           "edit_state",
                           "bool",
                           False,
                           keyable=False)
    # affected objects
    layer_node.addAttr("layer_objects", at='message', m=True)
    layer_node.addAttr("layer_blendshape_node", at='message', m=True)
    # master envelope for on/off
    attribute.addAttribute(layer_node,
                           "crank_layer_envelope",
                           "float",
                           value=1,
                           minValue=0,
                           maxValue=1)
    # create the post-blendshapes nodes for each affected object

    # connections
    for x in affectedElements:
        idx = attribute.get_next_available_index(layer_node.layer_objects)
        pm.connectAttr(x.message, layer_node.layer_objects[idx])

    return layer_node
Exemplo n.º 9
0
    def addBlade(self, name, parentPos, parentDir):
        """Add a blade object to the guide.

        This mehod can initialize the object or draw it.
        Blade object is a 3points curve to define a plan in the guide.

        Args:
            name (str): Local name of the element.
            parentPos (dagNode): The parent of the element.
            parentDir (dagNode): The direction constraint of the element.

        Returns:
            dagNode:  The created blade curve.

        """
        if name not in self.blades.keys():
            self.blades[name] = vector.Blade(
                transform.getTransformFromPos(datatypes.Vector(0, 0, 0)))
            offset = False
        else:
            offset = True

        dist = .6 * self.root.attr("scaleX").get()
        blade = icon.guideBladeIcon(parent=parentPos,
                                    name=self.getName(name),
                                    lenX=dist,
                                    color=13,
                                    m=self.blades[name].transform)
        aim_cns = applyop.aimCns(blade,
                                 parentDir,
                                 axis="xy",
                                 wupType=2,
                                 wupVector=[0, 1, 0],
                                 wupObject=self.root,
                                 maintainOffset=offset)
        pm.pointConstraint(parentPos, blade)

        offsetAttr = attribute.addAttribute(blade, "bladeRollOffset", "float",
                                            aim_cns.attr("offsetX").get())
        pm.connectAttr(offsetAttr, aim_cns.attr("offsetX"))
        attribute.lockAttribute(blade)

        return blade
    def postConnect(self):
        """Post connection actions."""

        # lock parameters
        xform_attrs = ["tx", "ty", "tz", "rx", "ry", "rz", "sx", "sy", "sz"]
        att.lockAttribute(self.fk_cns, xform_attrs)
        att.lockAttribute(self.ik_cns, xform_attrs)
        att.lockAttribute(self.ikRot_cns, xform_attrs)

        # self.fk_cns.setAttr("visibility", False)
        # self.ik_cns.setAttr("visibility", False)
        # self.ikRot_cns.setAttr("visibility", False)
        for npo in self.fk_npo:
            att.lockAttribute(npo, xform_attrs)
            # npo.setAttr("visibility", False)

        for chain in self.chain:
            chain.setAttr("visibility", False)
        att.setKeyableAttributes(self.ikRot_ctl, ["rx", "ry", "rz"])
Exemplo n.º 11
0
    def addObjects(self):
        """Add the Guide Root, blade and locators"""
        lockAttrs = ["tx", "ry", "rz"]
        self.root = self.addRoot()
        vTemp = transform.getOffsetPosition(self.root, [0, -3, 0.1])
        self.knee = self.addLoc("knee", self.root, vTemp)
        attribute.lockAttribute(self.knee, lockAttrs)
        vTemp = transform.getOffsetPosition(self.root, [0, -6, 0])
        self.ankle = self.addLoc("ankle", self.knee, vTemp)
        attribute.lockAttribute(self.ankle, lockAttrs)
        vTemp = transform.getOffsetPosition(self.root, [0, -9, .2])
        self.foot = self.addLoc("foot", self.ankle, vTemp)
        attribute.lockAttribute(self.foot, lockAttrs)
        vTemp = transform.getOffsetPosition(self.root, [0, -9, 1])
        self.eff = self.addLoc("eff", self.foot, vTemp)

        centers = [self.root, self.knee, self.ankle, self.foot, self.eff]
        self.dispcrv = self.addDispCurve("crv1", centers)
Exemplo n.º 12
0
def characterizeBiped(*args):
    try:
        gCtl = pm.PyNode("global_C0_ctl")
        mocapAttach = att.addAttribute(
            gCtl,
            "mocapAttach",
            "float",
            1.0,
            minValue=0.0,
            maxValue=1.0
        )
    except Exception:
        pm.displayWarning("global_C0_ctl: Is not in the scene")
        return

    # Align skeleton
    for a, b in zip(skelFK, gearFK):
        try:
            oA = pm.PyNode(a)
        except Exception:
            pm.displayWarning(a + ": Is not in the scene")
        try:
            oB = pm.PyNode(b)
        except Exception:
            pm.displayWarning(b + ": Is not in the scene")
        tra.matchWorldTransform(oB, oA)

    # Constrain FK controls
    for a, b in zip(skelFK, gearFK):
        oA = pm.PyNode(a)
        oB = pm.PyNode(b)
        cns = pm.parentConstraint(oA, oB, mo=True)

        pb_node = pm.createNode("pairBlend")

        pm.connectAttr(cns + ".constraintRotateX", pb_node + ".inRotateX2")
        pm.connectAttr(cns + ".constraintRotateY", pb_node + ".inRotateY2")
        pm.connectAttr(cns + ".constraintRotateZ", pb_node + ".inRotateZ2")
        pm.connectAttr(pb_node + ".outRotateX", oB + ".rotateX", f=True)
        pm.connectAttr(pb_node + ".outRotateY", oB + ".rotateY", f=True)
        pm.connectAttr(pb_node + ".outRotateZ", oB + ".rotateZ", f=True)
        pm.setKeyframe(oB, at="rotateX")
        pm.setKeyframe(oB, at="rotateY")
        pm.setKeyframe(oB, at="rotateZ")

        pm.connectAttr(cns + ".constraintTranslateX",
                       pb_node + ".inTranslateX2")
        pm.connectAttr(cns + ".constraintTranslateY",
                       pb_node + ".inTranslateY2")
        pm.connectAttr(cns + ".constraintTranslateZ",
                       pb_node + ".inTranslateZ2")
        pm.connectAttr(pb_node + ".outTranslateX", oB + ".translateX", f=True)
        pm.connectAttr(pb_node + ".outTranslateY", oB + ".translateY", f=True)
        pm.connectAttr(pb_node + ".outTranslateZ", oB + ".translateZ", f=True)
        pm.setKeyframe(oB, at="translateX")
        pm.setKeyframe(oB, at="translateY")
        pm.setKeyframe(oB, at="translateZ")

        pm.connectAttr(mocapAttach, pb_node.attr("weight"))

    # Align IK controls with FK controls
    for a, b in zip(alignIK, alignFK):
        oA = pm.PyNode(a)
        oB = pm.PyNode(b)
        tra.matchWorldTransform(oB, oA)
        if a in [u"arm_L0_upv_ctl", u"arm_R0_upv_ctl"]:
            oA.attr("tz").set(-3)
        if a == u"arm_L0_ikcns_ctl":
            oA.attr("rx").set((oA.attr("rx").get() + 90))
        if a == u"arm_R0_ikcns_ctl":
            oA.attr("rx").set((oA.attr("rx").get() - 90))

    # constrain IK controls
    for a, b in zip(skelIK, gearIK):
        oA = pm.PyNode(a)
        oB = pm.PyNode(b)
        print b
        pb_node = pm.createNode("pairBlend")
        try:
            if b in (u"leg_L0_upv_ctl", u"leg_R0_upv_ctl"):
                att.lockAttribute(pm.PyNode(b), lock=False, keyable=True)
            if b in (u"leg_L0_mid_ctl",
                     u"leg_R0_mid_ctl",
                     u"arm_L0_mid_ctl",
                     u"arm_R0_mid_ctl"):
                cns = pm.pointConstraint(oA, oB, mo=True)
            else:
                cns = pm.parentConstraint(oA, oB, mo=True)
            pm.connectAttr(cns + ".constraintRotateX", pb_node + ".inRotateX2")
            pm.connectAttr(cns + ".constraintRotateY", pb_node + ".inRotateY2")
            pm.connectAttr(cns + ".constraintRotateZ", pb_node + ".inRotateZ2")
            pm.connectAttr(pb_node + ".outRotateX", oB + ".rotateX", f=True)
            pm.connectAttr(pb_node + ".outRotateY", oB + ".rotateY", f=True)
            pm.connectAttr(pb_node + ".outRotateZ", oB + ".rotateZ", f=True)
            pm.setKeyframe(oB, at="rotateX")
            pm.setKeyframe(oB, at="rotateY")
            pm.setKeyframe(oB, at="rotateZ")
        except Exception:
            cns = pm.pointConstraint(oA, oB, mo=True)

        pm.connectAttr(cns + ".constraintTranslateX",
                       pb_node + ".inTranslateX2")
        pm.connectAttr(cns + ".constraintTranslateY",
                       pb_node + ".inTranslateY2")
        pm.connectAttr(cns + ".constraintTranslateZ",
                       pb_node + ".inTranslateZ2")
        pm.connectAttr(pb_node + ".outTranslateX", oB + ".translateX", f=True)
        pm.connectAttr(pb_node + ".outTranslateY", oB + ".translateY", f=True)
        pm.connectAttr(pb_node + ".outTranslateZ", oB + ".translateZ", f=True)
        pm.setKeyframe(oB, at="translateX")
        pm.setKeyframe(oB, at="translateY")
        pm.setKeyframe(oB, at="translateZ")

        pm.connectAttr(mocapAttach, pb_node.attr("weight"))
Exemplo n.º 13
0
    def addObjects(self):
        """Add all the objects needed to create the component."""

        self.setup = primitive.addTransformFromPos(
            self.setupWS, self.getName("WS"))
        attribute.lockAttribute(self.setup)

        self.WIP = self.options["mode"]

        self.normal = self.getNormalFromPos(self.guide.apos)

        self.length0 = vector.getDistance(self.guide.apos[0],
                                          self.guide.apos[1])
        self.length1 = vector.getDistance(self.guide.apos[1],
                                          self.guide.apos[2])
        self.length2 = vector.getDistance(self.guide.apos[2],
                                          self.guide.apos[3])
        self.length3 = vector.getDistance(self.guide.apos[3],
                                          self.guide.apos[4])

        # 3bones chain
        self.chain3bones = primitive.add2DChain(
            self.setup,
            self.getName("chain3bones%s_jnt"),
            self.guide.apos[0:4],
            self.normal,
            False,
            self.WIP)

        # 2bones chain
        self.chain2bones = primitive.add2DChain(
            self.setup,
            self.getName("chain2bones%s_jnt"),
            self.guide.apos[0:3],
            self.normal,
            False,
            self.WIP)

        # Leg chain
        self.legBones = primitive.add2DChain(
            self.root,
            self.getName("legBones%s_jnt"),
            self.guide.apos[0:4],
            self.normal,
            False,
            self.WIP)

        # Leg chain FK ref
        self.legBonesFK = primitive.add2DChain(
            self.root,
            self.getName("legFK%s_jnt"),
            self.guide.apos[0:4],
            self.normal,
            False,
            self.WIP)

        # Leg chain IK ref
        self.legBonesIK = primitive.add2DChain(
            self.root,
            self.getName("legIK%s_jnt"),
            self.guide.apos[0:4],
            self.normal,
            False,
            self.WIP)

        # 1 bone chain for upv ref
        self.legChainUpvRef = primitive.add2DChain(
            self.root,
            self.getName("legUpvRef%s_jnt"),
            [self.guide.apos[0], self.guide.apos[3]],
            self.normal,
            False,
            self.WIP)

        # mid joints
        self.mid1_jnt = primitive.addJoint(
            self.legBones[0],
            self.getName("mid1_jnt"),
            self.legBones[1].getMatrix(worldSpace=True),
            self.WIP)

        self.mid1_jnt.attr("radius").set(3)
        self.mid1_jnt.setAttr("jointOrient", 0, 0, 0)

        self.mid2_jnt = primitive.addJoint(
            self.legBones[1],
            self.getName("mid2_jnt"),
            self.legBones[2].getMatrix(worldSpace=True),
            self.WIP)

        self.mid2_jnt.attr("radius").set(3)
        self.mid2_jnt.setAttr("jointOrient", 0, 0, 0)

        # base Controlers -----------------------------------
        t = transform.getTransformFromPos(self.guide.apos[0])
        self.root_npo = primitive.addTransform(
            self.root, self.getName("root_npo"), t)

        self.root_ctl = self.addCtl(self.root_npo,
                                    "root_ctl",
                                    t,
                                    self.color_fk,
                                    "circle",
                                    w=self.length0 / 6,
                                    tp=self.parentCtlTag)
        attribute.lockAttribute(self.root_ctl, ["sx", "sy", "sz", "v"])

        # FK Controlers -----------------------------------
        t = transform.getTransformLookingAt(self.guide.apos[0],
                                            self.guide.apos[1],
                                            self.normal,
                                            "xz",
                                            self.negate)

        self.fk0_npo = primitive.addTransform(
            self.root_ctl, self.getName("fk0_npo"), t)

        self.fk0_ctl = self.addCtl(
            self.fk0_npo,
            "fk0_ctl",
            t,
            self.color_fk,
            "cube",
            w=self.length0,
            h=self.size * .1,
            d=self.size * .1,
            po=datatypes.Vector(.5 * self.length0 * self.n_factor, 0, 0),
            tp=self.root_ctl)
        attribute.setKeyableAttributes(self.fk0_ctl)

        t = transform.getTransformLookingAt(self.guide.apos[1],
                                            self.guide.apos[2],
                                            self.normal,
                                            "xz",
                                            self.negate)
        self.fk1_npo = primitive.addTransform(
            self.fk0_ctl, self.getName("fk1_npo"), t)
        self.fk1_ctl = self.addCtl(
            self.fk1_npo,
            "fk1_ctl",
            t,
            self.color_fk,
            "cube",
            w=self.length1,
            h=self.size * .1,
            d=self.size * .1,
            po=datatypes.Vector(.5 * self.length1 * self.n_factor, 0, 0),
            tp=self.fk0_ctl)
        attribute.setKeyableAttributes(self.fk1_ctl)

        t = transform.getTransformLookingAt(self.guide.apos[2],
                                            self.guide.apos[3],
                                            self.normal,
                                            "xz",
                                            self.negate)

        self.fk2_npo = primitive.addTransform(
            self.fk1_ctl, self.getName("fk2_npo"), t)

        self.fk2_ctl = self.addCtl(
            self.fk2_npo,
            "fk2_ctl",
            t,
            self.color_fk,
            "cube",
            w=self.length2,
            h=self.size * .1,
            d=self.size * .1,
            po=datatypes.Vector(.5 * self.length2 * self.n_factor, 0, 0),
            tp=self.fk1_ctl)

        attribute.setKeyableAttributes(self.fk2_ctl)

        t = transform.getTransformLookingAt(self.guide.apos[3],
                                            self.guide.apos[4],
                                            self.normal,
                                            "xz",
                                            self.negate)

        self.fk3_npo = primitive.addTransform(
            self.fk2_ctl, self.getName("fk3_npo"), t)

        self.fk3_ctl = self.addCtl(
            self.fk3_npo,
            "fk3_ctl",
            t,
            self.color_fk,
            "cube",
            w=self.length3,
            h=self.size * .1,
            d=self.size * .1,
            po=datatypes.Vector(.5 * self.length3 * self.n_factor, 0, 0),
            tp=self.fk2_ctl)

        attribute.setKeyableAttributes(self.fk3_ctl)

        self.fk_ctl = [self.fk0_ctl, self.fk1_ctl, self.fk2_ctl, self.fk3_ctl]

        for x in self.fk_ctl:
            attribute.setInvertMirror(x, ["tx", "ty", "tz"])

        # Mid Controlers ------------------------------------
        self.knee_lvl = primitive.addTransform(
            self.root,
            self.getName("knee_lvl"),
            transform.getTransform(self.mid1_jnt))

        self.knee_ctl = self.addCtl(
            self.knee_lvl,
            "knee_ctl",
            transform.getTransform(self.mid1_jnt),
            self.color_ik,
            "sphere",
            w=self.size * .2,
            tp=self.root_ctl)

        attribute.setInvertMirror(self.knee_ctl, ["tx", "ty", "tz"])
        attribute.lockAttribute(self.knee_ctl, ["sx", "sy", "sz", "v"])

        self.ankle_lvl = primitive.addTransform(
            self.root,
            self.getName("ankle_lvl"),
            transform.getTransform(self.mid2_jnt))

        self.ankle_ctl = self.addCtl(
            self.ankle_lvl,
            "ankle_ctl",
            transform.getTransform(self.mid2_jnt),
            self.color_ik,
            "sphere",
            w=self.size * .2,
            tp=self.knee_ctl)

        attribute.setInvertMirror(self.ankle_ctl, ["tx", "ty", "tz"])
        attribute.lockAttribute(self.ankle_ctl, ["sx", "sy", "sz", "v"])

        # IK controls --------------------------------------------------------

        # foot IK

        # "z-x",
        t_align = transform.getTransformLookingAt(self.guide.apos[3],
                                                  self.guide.apos[4],
                                                  self.normal,
                                                  "zx",
                                                  False)

        if self.settings["ikOri"]:
            t = transform.getTransformFromPos(self.guide.pos["foot"])
            # t = transform.getTransformLookingAt(self.guide.pos["foot"],
            #                                     self.guide.pos["eff"],
            #                                     self.x_axis,
            #                                     "zx",
            #                                     False)
        else:
            t = t_align

        self.ik_cns = primitive.addTransform(
            self.root_ctl, self.getName("ik_cns"), t)

        self.ikcns_ctl = self.addCtl(self.ik_cns,
                                     "ikcns_ctl",
                                     t,
                                     self.color_ik,
                                     "null",
                                     w=self.size * .12,
                                     tp=self.ankle_ctl)

        attribute.setInvertMirror(self.ikcns_ctl, ["tx"])
        attribute.lockAttribute(self.ikcns_ctl, ["sx", "sy", "sz", "v"])

        self.ik_ctl = self.addCtl(self.ikcns_ctl,
                                  "ik_ctl",
                                  t,
                                  self.color_ik,
                                  "cube",
                                  w=self.size * .12,
                                  h=self.size * .12,
                                  d=self.size * .12,
                                  tp=self.ikcns_ctl)
        attribute.setKeyableAttributes(self.ik_ctl)
        attribute.setRotOrder(self.ik_ctl, "XZY")
        attribute.setInvertMirror(self.ik_ctl, ["tx", "ry", "rz"])
        attribute.lockAttribute(self.ik_ctl, ["sx", "sy", "sz", "v"])

        # 2 bones ik layer
        self.ik2b_ikCtl_ref = primitive.addTransform(
            self.ik_ctl, self.getName("ik2B_A_ref"), t_align)
        self.ik2b_bone_ref = primitive.addTransform(
            self.chain3bones[3], self.getName("ik2B_B_ref"), t_align)
        self.ik2b_blend = primitive.addTransform(
            self.ik_ctl, self.getName("ik2B_blend"), t_align)

        self.roll_ctl = self.addCtl(self.ik2b_blend,
                                    "roll_ctl",
                                    t_align,
                                    self.color_ik,
                                    "crossarrow",
                                    w=self.length2 * .5 * self.n_factor,
                                    tp=self.ik_ctl)

        self.ik2b_ik_npo = primitive.addTransform(
            self.roll_ctl,
            self.getName("ik2B_ik_npo"),
            transform.getTransform(self.chain3bones[-1]))

        self.ik2b_ik_ref = primitive.addTransformFromPos(
            self.ik2b_ik_npo,
            self.getName("ik2B_ik_ref"),
            self.guide.pos["ankle"])

        attribute.lockAttribute(
            self.roll_ctl, ["tx", "ty", "tz", "sx", "sy", "sz", "v"])

        # upv
        v = self.guide.apos[2] - self.guide.apos[0]
        v = self.normal ^ v
        v.normalize()
        v *= self.size * .5
        v += self.guide.apos[1]

        self.upv_lvl = primitive.addTransformFromPos(
            self.root, self.getName("upv_lvl"), v)
        self.upv_cns = primitive.addTransformFromPos(
            self.upv_lvl, self.getName("upv_cns"), v)

        self.upv_ctl = self.addCtl(self.upv_cns,
                                   "upv_ctl",
                                   transform.getTransform(self.upv_cns),
                                   self.color_ik,
                                   "diamond",
                                   w=self.size * .12,
                                   tp=self.ik_ctl)

        attribute.setInvertMirror(self.upv_ctl, ["tx"])
        attribute.setKeyableAttributes(self.upv_ctl, ["tx", "ty", "tz"])

        # Soft IK objects 3 bones chain --------------------------------
        t = transform.getTransformLookingAt(self.guide.pos["root"],
                                            self.guide.pos["foot"],
                                            self.x_axis,
                                            "zx",
                                            False)

        self.aim_tra = primitive.addTransform(
            self.root_ctl, self.getName("aimSoftIK"), t)

        t = transform.getTransformFromPos(self.guide.pos["foot"])
        self.wristSoftIK = primitive.addTransform(
            self.aim_tra, self.getName("wristSoftIK"), t)

        self.softblendLoc = primitive.addTransform(
            self.root, self.getName("softblendLoc"), t)

        # Soft IK objects 2 Bones chain ----------------------------
        t = transform.getTransformLookingAt(self.guide.pos["root"],
                                            self.guide.pos["ankle"],
                                            self.x_axis,
                                            "zx",
                                            False)

        self.aim_tra2 = primitive.addTransform(
            self.root_ctl, self.getName("aimSoftIK2"), t)

        t = transform.getTransformFromPos(self.guide.pos["ankle"])

        self.ankleSoftIK = primitive.addTransform(
            self.aim_tra2, self.getName("ankleSoftIK"), t)

        self.softblendLoc2 = primitive.addTransform(
            self.root, self.getName("softblendLoc2"), t)

        # References --------------------------------------
        self.ik_ref = primitive.addTransform(
            self.ik_ctl,
            self.getName("ik_ref"),
            transform.getTransform(self.ik_ctl))

        self.fk_ref = primitive.addTransform(
            self.fk_ctl[3],
            self.getName("fk_ref"),
            transform.getTransform(self.ik_ctl))

        # twist references --------------------------------------
        self.rollRef = primitive.add2DChain(self.root,
                                            self.getName("rollChain"),
                                            self.guide.apos[:2],
                                            self.normal,
                                            False,
                                            self.WIP)

        self.tws0_loc = primitive.addTransform(
            self.rollRef[0],
            self.getName("tws0_loc"),
            transform.getTransform(self.legBones[0]))

        self.tws0_rot = primitive.addTransform(
            self.tws0_loc,
            self.getName("tws0_rot"),
            transform.getTransform(self.legBones[0]))

        self.tws0_rot.setAttr("sx", .001)

        self.tws1_loc = primitive.addTransform(
            self.mid1_jnt,
            self.getName("tws1_loc"),
            transform.getTransform(self.mid1_jnt))

        self.tws1_rot = primitive.addTransform(
            self.tws1_loc,
            self.getName("tws1_rot"),
            transform.getTransform(self.mid1_jnt))

        self.tws1_rot.setAttr("sx", .001)

        self.tws2_loc = primitive.addTransform(
            self.mid2_jnt,
            self.getName("tws2_loc"),
            transform.getTransform(self.mid2_jnt))

        self.tws2_rot = primitive.addTransform(
            self.tws2_loc,
            self.getName("tws2_rot"),
            transform.getTransform(self.mid2_jnt))

        self.tws2_rot.setAttr("sx", .001)

        self.tws3_loc = primitive.addTransform(
            self.legBones[3],
            self.getName("tws3_loc"),
            transform.getTransform(self.legBones[3]))

        self.tws3_rot = primitive.addTransform(
            self.tws3_loc,
            self.getName("tws3_rot"),
            transform.getTransform(self.legBones[3]))

        self.tws3_rot.setAttr("sx", .001)

        # Divisions ----------------------------------------
        # We have at least one division at the start, the end and one for
        # the knee and one ankle
        o_set = self.settings
        self.divisions = o_set["div0"] + o_set["div1"] + o_set["div2"] + 4

        self.div_cns = []
        for i in range(self.divisions):
            div_cns = primitive.addTransform(self.root_ctl,
                                             self.getName("div%s_loc" % i))
            self.div_cns.append(div_cns)
            self.jnt_pos.append([div_cns, i])

        # End reference ------------------------------------
        # To help the deformation on the foot
        self.end_ref = primitive.addTransform(
            self.tws3_rot,
            self.getName("end_ref"),
            transform.getTransform(self.legBones[3]))
        self.jnt_pos.append([self.end_ref, 'end'])

        # match IK FK references
        self.match_fk0_off = primitive.addTransform(
            self.root,
            self.getName("matchFk0_npo"),
            transform.getTransform(self.fk_ctl[1]))

        self.match_fk0 = primitive.addTransform(
            self.match_fk0_off,
            self.getName("fk0_mth"),
            transform.getTransform(self.fk_ctl[0]))

        self.match_fk1_off = primitive.addTransform(
            self.root,
            self.getName("matchFk1_npo"),
            transform.getTransform(self.fk_ctl[2]))

        self.match_fk1 = primitive.addTransform(
            self.match_fk1_off,
            self.getName("fk1_mth"),
            transform.getTransform(self.fk_ctl[1]))

        self.match_fk2_off = primitive.addTransform(
            self.root,
            self.getName("matchFk2_npo"),
            transform.getTransform(self.fk_ctl[3]))

        self.match_fk2 = primitive.addTransform(
            self.match_fk2_off,
            self.getName("fk2_mth"),
            transform.getTransform(self.fk_ctl[2]))

        self.match_fk3 = primitive.addTransform(
            self.ik_ctl,
            self.getName("fk3_mth"),
            transform.getTransform(self.fk_ctl[3]))

        self.match_ik = primitive.addTransform(
            self.fk3_ctl,
            self.getName("ik_mth"),
            transform.getTransform(self.ik_ctl))

        self.match_ikUpv = primitive.addTransform(
            self.fk0_ctl,
            self.getName("upv_mth"),
            transform.getTransform(self.upv_ctl))

        # add visual reference
        self.line_ref = icon.connection_display_curve(
            self.getName("visalRef"), [self.upv_ctl, self.knee_ctl])
Exemplo n.º 14
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """
        # Visibilities -------------------------------------

        # ik
        if self.settings["useRollCtl"]:
            for shp in self.roll_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for bk_ctl in self.bk_ctl:
            for shp in bk_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.heel_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))
        for shp in self.tip_ctl.getShapes():
            pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # Roll / Bank --------------------------------------
        if self.settings["useRollCtl"]:  # Using the controler
            self.roll_att = self.roll_ctl.attr("rz")
            self.bank_att = self.roll_ctl.attr("rx")

        clamp_node = node.createClampNode(
            [self.roll_att, self.bank_att, self.bank_att],
            [0, -180, 0],
            [180, 0, 180])

        inAdd_nod = node.createAddNode(
            clamp_node + ".outputB",
            pm.getAttr(self.in_piv.attr("rx")) * self.n_factor)

        pm.connectAttr(clamp_node + ".outputR", self.heel_loc.attr("rz"))
        pm.connectAttr(clamp_node + ".outputG", self.out_piv.attr("rx"))
        pm.connectAttr(inAdd_nod + ".output", self.in_piv.attr("rx"))

        # Reverse Controler offset -------------------------
        angle_outputs = node.createAddNodeMulti(self.angles_att)
        for i, bk_loc in enumerate(reversed(self.bk_loc)):

            if i == 0:  # First
                input = self.roll_att
                min_input = self.angles_att[i]

            elif i == len(self.angles_att):  # Last
                sub_nod = node.createSubNode(self.roll_att,
                                             angle_outputs[i - 1])
                input = sub_nod + ".output"
                min_input = -360

            else:  # Others
                sub_nod = node.createSubNode(self.roll_att,
                                             angle_outputs[i - 1])
                input = sub_nod + ".output"
                min_input = self.angles_att[i]

            clamp_node = node.createClampNode(input, min_input, 0)

            add_node = node.createAddNode(clamp_node + ".outputR",
                                          bk_loc.getAttr("rz"))

            pm.connectAttr(add_node + ".output", bk_loc.attr("rz"))

        # Reverse compensation -----------------------------
        for i, fk_loc in enumerate(self.fk_loc):
            bk_ctl = self.bk_ctl[-i - 1]
            bk_loc = self.bk_loc[-i - 1]
            fk_ctl = self.fk_ctl[i]

            # Inverse Rotorder
            applyop.gear_inverseRotorder_op(bk_loc, fk_ctl)
            pm.connectAttr(fk_ctl.attr("ro"), fk_loc.attr("ro"))
            attribute.lockAttribute(bk_loc, "ro")

            # Compensate the backward rotation
            # ik
            # addx_node = node.createAddNode(bk_loc.attr("rx"), bk_loc.attr("rx"))
            # addy_node = node.createAddNode(bk_loc.attr("ry"), bk_loc.attr("ry"))
            # addz_node = node.createAddNode(bk_loc.attr("rz"), bk_loc.attr("rz"))
            addz_node = node.createAddNode(
                bk_loc.attr("rz"), -bk_loc.getAttr("rz") - fk_loc.getAttr("rz"))

            neg_node = node.createMulNode([bk_loc.attr("rx"),
                                           bk_loc.attr("ry"),
                                           addz_node + ".output"],
                                          [-1, -1, -1])
            ik_outputs = [neg_node + ".outputX",
                          neg_node + ".outputY",
                          neg_node + ".outputZ"]

            # fk
            fk_outputs = [0, 0, fk_loc.getAttr("rz")]

            # blend
            blend_node = node.createBlendNode(ik_outputs,
                                              fk_outputs,
                                              self.blend_att)
            pm.connectAttr(blend_node + ".output", fk_loc.attr("rotate"))

        return
Exemplo n.º 15
0
    def initialHierarchy(self):
        """Build the initial hierarchy of the rig.

        Create the rig model, the main properties,
        and a couple of base organisation nulls.
        Get the global size of the rig.

        """
        mgear.log("Initial Hierarchy")

        # --------------------------------------------------
        # Model
        self.model = primitive.addTransformFromPos(None,
                                                   self.options["rig_name"])
        attribute.lockAttribute(self.model)

        # --------------------------------------------------
        # INFOS
        self.isRig_att = attribute.addAttribute(self.model, "is_rig", "bool",
                                                True)
        self.rigName_att = attribute.addAttribute(self.model, "rig_name",
                                                  "string",
                                                  self.options["rig_name"])
        self.user_att = attribute.addAttribute(self.model, "user", "string",
                                               getpass.getuser())
        self.isWip_att = attribute.addAttribute(self.model, "wip", "bool",
                                                self.options["mode"] != 0)
        self.date_att = attribute.addAttribute(self.model, "date", "string",
                                               str(datetime.datetime.now()))
        self.mayaVersion_att = attribute.addAttribute(
            self.model, "maya_version", "string",
            str(pm.mel.eval("getApplicationVersionAsFloat")))
        self.gearVersion_att = attribute.addAttribute(self.model,
                                                      "gear_version", "string",
                                                      mgear.getVersion())
        self.synoptic_att = attribute.addAttribute(
            self.model, "synoptic", "string", str(self.options["synoptic"]))
        self.comments_att = attribute.addAttribute(
            self.model, "comments", "string", str(self.options["comments"]))
        self.ctlVis_att = attribute.addAttribute(self.model, "ctl_vis", "bool",
                                                 True)
        if versions.current() >= 201650:
            self.ctlVisPlayback_att = attribute.addAttribute(
                self.model, "ctl_vis_on_playback", "bool", True)
        self.jntVis_att = attribute.addAttribute(self.model, "jnt_vis", "bool",
                                                 True)

        self.qsA_att = attribute.addAttribute(self.model, "quickselA",
                                              "string", "")
        self.qsB_att = attribute.addAttribute(self.model, "quickselB",
                                              "string", "")
        self.qsC_att = attribute.addAttribute(self.model, "quickselC",
                                              "string", "")
        self.qsD_att = attribute.addAttribute(self.model, "quickselD",
                                              "string", "")
        self.qsE_att = attribute.addAttribute(self.model, "quickselE",
                                              "string", "")
        self.qsF_att = attribute.addAttribute(self.model, "quickselF",
                                              "string", "")

        self.rigGroups = self.model.addAttr("rigGroups", at='message', m=1)
        self.rigPoses = self.model.addAttr("rigPoses", at='message', m=1)
        self.rigCtlTags = self.model.addAttr("rigCtlTags", at='message', m=1)
        self.rigScriptNodes = self.model.addAttr("rigScriptNodes",
                                                 at='message',
                                                 m=1)

        # ------------------------- -------------------------
        # Global Ctl
        if self.options["worldCtl"]:
            if self.options["world_ctl_name"]:
                name = self.options["world_ctl_name"]
            else:
                name = "world_ctl"

            icon_shape = "circle"

        else:
            name = "global_C0_ctl"
            icon_shape = "crossarrow"

        self.global_ctl = self.addCtl(self.model,
                                      name,
                                      datatypes.Matrix(),
                                      self.options["C_color_fk"],
                                      icon_shape,
                                      w=10)
        attribute.setRotOrder(self.global_ctl, "ZXY")

        # Connect global visibility
        pm.connectAttr(self.ctlVis_att, self.global_ctl.attr("visibility"))
        if versions.current() >= 201650:
            pm.connectAttr(self.ctlVisPlayback_att,
                           self.global_ctl.attr("hideOnPlayback"))
        attribute.lockAttribute(self.global_ctl, ['v'])

        # --------------------------------------------------
        # Setup in world Space
        self.setupWS = primitive.addTransformFromPos(self.model, "setup")
        attribute.lockAttribute(self.setupWS)
        # --------------------------------------------------
        # Basic set of null
        if self.options["joint_rig"]:
            self.jnt_org = primitive.addTransformFromPos(self.model, "jnt_org")
            pm.connectAttr(self.jntVis_att, self.jnt_org.attr("visibility"))
Exemplo n.º 16
0
    def addObjects(self):
        """Add all the objects needed to create the component."""

        self.normal = self.guide.blades["blade"].z * -1
        self.binormal = self.guide.blades["blade"].x

        self.isFk = self.settings["mode"] != 1
        self.isIk = self.settings["mode"] != 0
        self.isFkIk = self.settings["mode"] == 2

        self.WIP = self.options["mode"]

        # FK controllers ------------------------------------
        if self.isFk:
            self.fk_npo = []
            self.fk_ctl = []
            self.fk_ref = []
            self.fk_off = []
            t = self.guide.tra["root"]
            self.ik_cns = primitive.addTransform(self.root,
                                                 self.getName("ik_cns"), t)
            parent = self.ik_cns
            tOld = False
            fk_ctl = None
            self.previousTag = self.parentCtlTag
            for i, t in enumerate(
                    transform.getChainTransform(self.guide.apos, self.normal,
                                                self.negate)):
                dist = vector.getDistance(self.guide.apos[i],
                                          self.guide.apos[i + 1])
                if self.settings["neutralpose"] or not tOld:
                    tnpo = t
                else:
                    tnpo = transform.setMatrixPosition(
                        tOld, transform.getPositionFromMatrix(t))
                if i:
                    tref = transform.setMatrixPosition(
                        tOld, transform.getPositionFromMatrix(t))
                    fk_ref = primitive.addTransform(
                        fk_ctl, self.getName("fk%s_ref" % i), tref)
                    self.fk_ref.append(fk_ref)
                else:
                    tref = t
                fk_off = primitive.addTransform(parent,
                                                self.getName("fk%s_off" % i),
                                                tref)
                fk_npo = primitive.addTransform(fk_off,
                                                self.getName("fk%s_npo" % i),
                                                tnpo)
                # ro is rotation offset. Yup. They coded it in radians... 1.5708 rad is 90 deg :\
                fk_ctl = self.addCtl(
                    fk_npo,
                    "fk%s_ctl" % i,
                    t,
                    self.color_fk,
                    "compas",
                    w=dist,
                    po=datatypes.Vector(0, 0, 0),
                    ro=datatypes.Vector(-1.5708, 0 - 1.5708),
                    tp=self.previousTag,
                )

                # lock vis
                attribute.lockAttribute(fk_ctl, attributes=['v'])
                # set rotateOrder to xzy. "Barrel roll" rotx remains stable. Spread roty stays on plane of hands.
                fk_ctl.rotateOrder.set(3)
                self.fk_off.append(fk_off)
                self.fk_npo.append(fk_npo)
                self.fk_ctl.append(fk_ctl)
                tOld = t
                self.previousTag = fk_ctl

        # IK controllers ------------------------------------
        if self.isIk:

            normal = vector.getTransposedVector(
                self.normal, [self.guide.apos[0], self.guide.apos[1]],
                [self.guide.apos[-2], self.guide.apos[-1]])
            t = transform.getTransformLookingAt(self.guide.apos[-2],
                                                self.guide.apos[-1], normal,
                                                "xy", self.negate)
            t = transform.setMatrixPosition(t, self.guide.apos[-1])

            self.ik_cns = primitive.addTransform(self.root,
                                                 self.getName("ik_cns"), t)
            self.ikcns_ctl = self.addCtl(self.ik_cns,
                                         "ikcns_ctl",
                                         t,
                                         self.color_ik,
                                         "null",
                                         w=self.size,
                                         tp=self.parentCtlTag)
            self.ik_ctl = self.addCtl(self.ikcns_ctl,
                                      "ik_ctl",
                                      t,
                                      self.color_ik,
                                      "cube",
                                      w=self.size * .3,
                                      h=self.size * .3,
                                      d=self.size * .3,
                                      tp=self.ikcns_ctl)
            attribute.setKeyableAttributes(self.ik_ctl, self.t_params)
            attribute.lockAttribute(self.ik_ctl, attributes=['v'])

            v = self.guide.apos[-1] - self.guide.apos[0]
            v = v ^ self.normal
            v.normalize()
            v *= self.size
            v += self.guide.apos[1]
            self.upv_cns = primitive.addTransformFromPos(
                self.root, self.getName("upv_cns"), v)

            self.upv_ctl = self.addCtl(self.upv_cns,
                                       "upv_ctl",
                                       transform.getTransform(self.upv_cns),
                                       self.color_ik,
                                       "diamond",
                                       w=self.size * .1,
                                       tp=self.parentCtlTag)
            attribute.setKeyableAttributes(self.upv_ctl, self.t_params)

            # Chain
            self.chain = primitive.add2DChain(self.root, self.getName("chain"),
                                              self.guide.apos, self.normal,
                                              self.negate)
            self.chain[0].attr("visibility").set(self.WIP)

        # Chain of deformers -------------------------------
        self.loc = []
        parent = self.root
        for i, t in enumerate(
                transform.getChainTransform(self.guide.apos, self.normal,
                                            self.negate)):
            loc = primitive.addTransform(parent, self.getName("%s_loc" % i), t)

            self.loc.append(loc)
            self.jnt_pos.append([loc, i, None, False])
Exemplo n.º 17
0
    def addOperators(self):
        """Create operators and set the relations for the component rig

        Apply operators, constraints, expressions to the hierarchy.
        In order to keep the code clean and easier to debug,
        we shouldn't create any new object in this method.

        """

        # Visibilities -------------------------------------
        if self.isFkIk:
            # fk
            fkvis_node = node.createReverseNode(self.blend_att)

            for fk_ctl in self.fk_ctl:
                for shp in fk_ctl.getShapes():
                    pm.connectAttr(fkvis_node + ".outputX",
                                   shp.attr("visibility"))

            # ik
            for shp in self.upv_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ikcns_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))
            for shp in self.ik_ctl.getShapes():
                pm.connectAttr(self.blend_att, shp.attr("visibility"))

        # FK Chain -----------------------------------------
        if self.isFk:
            for off, ref in zip(self.fk_off[1:], self.fk_ref):
                applyop.gear_mulmatrix_op(ref.worldMatrix,
                                          off.parentInverseMatrix, off, "rt")
        # IK Chain -----------------------------------------
        if self.isIk:
            self.ikh = primitive.addIkHandle(self.root, self.getName("ikh"),
                                             self.chain)
            self.ikh.attr("visibility").set(False)

            # Constraint and up vector
            pm.pointConstraint(self.ik_ctl, self.ikh, maintainOffset=False)
            pm.poleVectorConstraint(self.upv_ctl, self.ikh)

            # TwistTest
            o_list = [round(elem, 4) for elem
                      in transform.getTranslation(self.chain[1])] \
                != [round(elem, 4) for elem in self.guide.apos[1]]

            if o_list:
                add_nodeTwist = node.createAddNode(180.0, self.roll_att)
                pm.connectAttr(add_nodeTwist + ".output",
                               self.ikh.attr("twist"))
            else:
                pm.connectAttr(self.roll_att, self.ikh.attr("twist"))

        # Chain of deformers -------------------------------
        if self.settings["mode"] == 0:  # fk only
            # Loop until the last one and connect aim constraints from index+1
            for i, loc in enumerate(self.loc[0:-1]):
                pm.pointConstraint(self.fk_ctl[i], loc, maintainOffset=False)
                pm.connectAttr(self.fk_ctl[i] + ".scale", loc + ".scale")
                pm.aimConstraint(
                    self.fk_ctl[i + 1],
                    loc,
                    maintainOffset=False,
                    aimVector=(1, 0, 0),
                    upVector=(0, 1, 0),
                    worldUpType='none',
                )
                oRoot = rigbits.addNPO(loc)[0]
                pm.parentConstraint(self.fk_ctl[i], oRoot, mo=True)
                attribute.lockAttribute(oRoot)
            # Then connect the last in the chain as a parent constraint
            pm.parentConstraint(self.fk_ctl[-1],
                                self.loc[-1],
                                maintainOffset=False)
            pm.connectAttr(self.fk_ctl[-1] + ".scale", self.loc[-1] + ".scale")
Exemplo n.º 18
0
    def addJoint(self,
                 obj,
                 name,
                 newActiveJnt=None,
                 UniScale=False,
                 segComp=0,
                 gearMulMatrix=True):
        """Add joint as child of the active joint or under driver object.

        Args:
            obj (dagNode): The input driver object for the joint.
            name (str): The joint name.
            newActiveJnt (bool or dagNode): If a joint is pass, this joint will
                be the active joint and parent of the newly created joint.
            UniScale (bool): Connects the joint scale with the Z axis for a
                unifor scalin, if set Falsewill connect with each axis
                separated.
            segComp (bool): Set True or False the segment compensation in the
                joint..
            gearMulMatrix (bool): Use the custom gear_multiply matrix node, if
                False will use Maya's default mulMatrix node.

        Returns:
            dagNode: The newly created joint.

        """

        customName = self.getCustomJointName(len(self.jointList))

        if self.options["joint_rig"]:
            if newActiveJnt:
                self.active_jnt = newActiveJnt

            jnt = primitive.addJoint(self.active_jnt, 
                customName or self.getName(str(name) + "_jnt"), 
                transform.getTransform(obj))

            # Disconnect inversScale for better preformance
            if isinstance(self.active_jnt, pm.nodetypes.Joint):
                try:
                    pm.disconnectAttr(self.active_jnt.scale, jnt.inverseScale)

                except RuntimeError:
                    # This handle the situation where we have in between joints
                    # transformation due a negative scaling
                    pm.ungroup(jnt.getParent())
            # All new jnts are the active by default
            self.active_jnt = jnt

            if gearMulMatrix:
                mulmat_node = applyop.gear_mulmatrix_op(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = node.createDecomposeMatrixNode(
                    mulmat_node + ".output")
                m = mulmat_node.attr('output').get()
            else:
                mulmat_node = node.createMultMatrixNode(
                    obj + ".worldMatrix", jnt + ".parentInverseMatrix")
                dm_node = node.createDecomposeMatrixNode(
                    mulmat_node + ".matrixSum")
                m = mulmat_node.attr('matrixSum').get()
            pm.connectAttr(dm_node + ".outputTranslate", jnt + ".t")
            pm.connectAttr(dm_node + ".outputRotate", jnt + ".r")
            # TODO: fix squash stretch solver to scale the joint uniform
            # the next line cheat the uniform scaling only fo X or Y axis
            # oriented joints
            if self.options["force_uniScale"]:
                UniScale = True

            # invert negative scaling in Joints. We only inver Z axis, so is
            # the only axis that we are checking
            if dm_node.attr("outputScaleZ").get() < 0:
                mul_nod_invert = node.createMulNode(
                    dm_node.attr("outputScaleZ"),
                    -1)
                out_val = mul_nod_invert.attr("outputX")
            else:
                out_val = dm_node.attr("outputScaleZ")

            # connect scaling
            if UniScale:
                pm.connectAttr(out_val, jnt + ".sx")
                pm.connectAttr(out_val, jnt + ".sy")
                pm.connectAttr(out_val, jnt + ".sz")
            else:
                pm.connectAttr(dm_node.attr("outputScaleX"), jnt + ".sx")
                pm.connectAttr(dm_node.attr("outputScaleY"), jnt + ".sy")
                pm.connectAttr(out_val, jnt + ".sz")
                pm.connectAttr(dm_node + ".outputShear", jnt + ".shear")

            # Segment scale compensate Off to avoid issues with the global
            # scale
            jnt.setAttr("segmentScaleCompensate", segComp)

            jnt.setAttr("jointOrient", 0, 0, 0)

            # setting the joint orient compensation in order to have clean
            # rotation channels
            jnt.attr("jointOrientX").set(jnt.attr("rx").get())
            jnt.attr("jointOrientY").set(jnt.attr("ry").get())
            jnt.attr("jointOrientZ").set(jnt.attr("rz").get())

            im = m.inverse()

            if gearMulMatrix:
                mul_nod = applyop.gear_mulmatrix_op(
                    mulmat_node.attr('output'), im, jnt, 'r')
                dm_node2 = mul_nod.output.listConnections()[0]
            else:
                mul_nod = node.createMultMatrixNode(
                    mulmat_node.attr('matrixSum'), im, jnt, 'r')
                dm_node2 = mul_nod.matrixSum.listConnections()[0]

            # if jnt.attr("sz").get() < 0:
            if dm_node.attr("outputScaleZ").get() < 0:
                # if negative scaling we have to negate some axis for rotation
                neg_rot_node = pm.createNode("multiplyDivide")
                pm.setAttr(neg_rot_node + ".operation", 1)
                pm.connectAttr(dm_node2.outputRotate,
                               neg_rot_node + ".input1",
                               f=True)
                for v, axis in zip([-1, -1, 1], "XYZ"):
                    pm.setAttr(neg_rot_node + ".input2" + axis, v)
                pm.connectAttr(neg_rot_node + ".output",
                               jnt + ".r",
                               f=True)

            # set not keyable
            attribute.setNotKeyableAttributes(jnt)

        else:
            jnt = primitive.addJoint(obj, 
                customName or self.getName(str(name) + "_jnt"), 
                transform.getTransform(obj))
            pm.connectAttr(self.rig.jntVis_att, jnt.attr("visibility"))
            attribute.lockAttribute(jnt)

        self.addToGroup(jnt, "deformers")

        # This is a workaround due the evaluation problem with compound attr
        # TODO: This workaround, should be removed onces the evaluation issue
        # is fixed
        # github issue: Shifter: Joint connection: Maya evaluation Bug #210
        dm = jnt.r.listConnections(p=True, type="decomposeMatrix")
        if dm:
            at = dm[0]
            dm_node = at.node()
            pm.disconnectAttr(at, jnt.r)
            pm.connectAttr(dm_node.outputRotateX, jnt.rx)
            pm.connectAttr(dm_node.outputRotateY, jnt.ry)
            pm.connectAttr(dm_node.outputRotateZ, jnt.rz)

        dm = jnt.t.listConnections(p=True, type="decomposeMatrix")
        if dm:
            at = dm[0]
            dm_node = at.node()
            pm.disconnectAttr(at, jnt.t)
            pm.connectAttr(dm_node.outputTranslateX, jnt.tx)
            pm.connectAttr(dm_node.outputTranslateY, jnt.ty)
            pm.connectAttr(dm_node.outputTranslateZ, jnt.tz)

        # dm = jnt.s.listConnections(p=True, type="decomposeMatrix")
        # if dm:
        #     at = dm[0]
        #     dm_node = at.node()
        #     pm.disconnectAttr(at, jnt.s)
        #     pm.connectAttr(dm_node.outputScaleX, jnt.sx)
        #     pm.connectAttr(dm_node.outputScaleY, jnt.sy)
        #     pm.connectAttr(dm_node.outputScaleZ, jnt.sz)

        return jnt