Exemplo n.º 1
0
from featurebox.selection.corr import Corr
from mgetool.exports import Store
from mgetool.imports import Call
from mgetool.show import corr_plot
from mgetool.tool import name_to_name

# import seaborn as sns

if __name__ == "__main__":
    import os

    os.chdir(r'band_gap')

    store = Store()
    data = Call()
    all_import = data.csv().all_import
    name_and_abbr = data.csv().name_and_abbr

    data_import = all_import
    data225_import = data_import
    X_frame = data225_import.drop(['exp_gap'], axis=1)
    y_frame = data225_import['exp_gap']
    X = X_frame.values
    y = y_frame.values
    #
    # """calculate corr"""
    corr = Corr(threshold=0.90, muti_grade=2, muti_index=[2, len(X)])
    corr.fit(X_frame)
    cof_list = corr.count_cof()
    #
    """get x_name and abbr"""
Exemplo n.º 2
0
this is a description
"""
import numpy as np
import pandas as pd

from bgp.selection.corr import Corr
from mgetool.exports import Store
from mgetool.imports import Call
from mgetool.tool import name_to_name

# import seaborn as sns

if __name__ == "__main__":
    store = Store(r'C:\Users\Administrator\Desktop\band_gap_exp\2.corr')
    data = Call(r'C:\Users\Administrator\Desktop\band_gap_exp')
    all_import = data.csv().all_import

    name_init, abbr_init = data.pickle_pd().name_and_abbr

    data_import = all_import
    data225_import = data_import.iloc[np.where(
        data_import['group_number'] == 225)[0]]
    X_frame = data225_import.drop(['exp_gap', 'group_number'], axis=1)
    y_frame = data225_import['exp_gap']
    X = X_frame.values
    y = y_frame.values
    """calculate corr"""
    corr = Corr(threshold=0.90, muti_grade=2, muti_index=[2, len(X)])
    corr.fit(X_frame)
    cof_list = corr.count_cof()
    """get x_name and abbr"""
Exemplo n.º 3
0
import numpy as np
from mgetool.exports import Store
from mgetool.imports import Call
from mgetool.tool import tt

from bgp.base import SymbolSet
from bgp.skflow import SymbolLearning

if __name__ == "__main__":
    import os

    os.chdir(r'band_gap')
    data = Call()
    name_and_abbr = data.csv().name_and_abbr

    SL_data = data.SL_data
    si_transformer = data.si_transformer

    store = Store()

    x, x_dim, y, y_dim, c, c_dim, X, Y = SL_data
    x_g = np.arange(x.shape[1])
    x_g = list(x_g[1:])

    x_g = x_g.reshape(-1, 2)
    pset0 = SymbolSet()
    pset0.add_features(x, y, x_dim=x_dim, y_dim=y_dim, x_group=x_g)
    pset0.add_constants(c, c_dim=c_dim, c_prob=0.05)
    pset0.add_operations(power_categories=(2, 3, 0.5, 1 / 3, 4, 1 / 4),
                         # categories=("Mul",),
                         categories=("Add", "Mul", "Sub", "Div", "exp", "ln"),