Exemplo n.º 1
0
def collect_image_paths(data_dir):
    image_keys = [
        structure.BrainImageTypes.T1w, structure.BrainImageTypes.GroundTruth
    ]

    class MyFilePathGenerator(futil.FilePathGenerator):
        @staticmethod
        def get_full_file_path(id_: str, root_dir: str, file_key,
                               file_extension: str) -> str:
            if file_key == structure.BrainImageTypes.T1w:
                file_name = 'T1native'
            elif file_key == structure.BrainImageTypes.GroundTruth:
                file_name = 'labels_native'
            else:
                raise ValueError('Unknown key')
            return os.path.join(root_dir, file_name + file_extension)

    dir_filter = futil.DataDirectoryFilter()

    # todo: create an instance of futil.FileSystemDataCrawler and pass the correpsonding arguments
    crawler = futil.FileSystemDataCrawler('../data/exercise/', image_keys,
                                          MyFilePathGenerator(), dir_filter,
                                          '.nii.gz')  # todo: modify here

    return crawler
Exemplo n.º 2
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str,
         data_test_dir: str):
    """Brain tissue segmentation using decision forests.

    The main routine executes the medical image analysis pipeline:

        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images
        - Post-processing of the segmentation
        - Evaluation of the segmentation
    """

    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    print('-' * 5, 'Training...')

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_train_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())
    pre_process_params = {
        'skullstrip_pre': True,
        'normalization_pre': True,
        'registration_pre': True,
        'coordinates_feature': True,
        'intensity_feature': True,
        'gradient_intensity_feature': True
    }

    # load images for training and pre-process
    images = putil.pre_process_batch(crawler.data,
                                     pre_process_params,
                                     multi_process=False)

    # generate feature matrix and label vector
    data_train = np.concatenate([img.feature_matrix[0] for img in images])
    labels_train = np.concatenate([img.feature_matrix[1]
                                   for img in images]).squeeze()

    #warnings.warn('Random forest parameters not properly set.')
    forest = sk_ensemble.RandomForestClassifier(
        max_features=images[0].feature_matrix[0].shape[1],
        n_estimators=10,
        max_depth=10)

    start_time = timeit.default_timer()
    forest.fit(data_train, labels_train)
    print(' Time elapsed:', timeit.default_timer() - start_time, 's')

    # create a result directory with timestamp
    t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    result_dir = os.path.join(result_dir, t)
    os.makedirs(result_dir, exist_ok=True)

    print('-' * 5, 'Testing...')

    # initialize evaluator
    evaluator = putil.init_evaluator()

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_test_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())

    # load images for testing and pre-process
    pre_process_params['training'] = False
    images_test = putil.pre_process_batch(crawler.data,
                                          pre_process_params,
                                          multi_process=False)

    images_prediction = []
    images_probabilities = []

    for img in images_test:
        print('-' * 10, 'Testing', img.id_)

        start_time = timeit.default_timer()
        predictions = forest.predict(img.feature_matrix[0])
        probabilities = forest.predict_proba(img.feature_matrix[0])
        print(' Time elapsed:', timeit.default_timer() - start_time, 's')

        # convert prediction and probabilities back to SimpleITK images
        image_prediction = conversion.NumpySimpleITKImageBridge.convert(
            predictions.astype(np.uint8), img.image_properties)
        image_probabilities = conversion.NumpySimpleITKImageBridge.convert(
            probabilities, img.image_properties)

        # evaluate segmentation without post-processing
        evaluator.evaluate(image_prediction,
                           img.images[structure.BrainImageTypes.GroundTruth],
                           img.id_)

        images_prediction.append(image_prediction)
        images_probabilities.append(image_probabilities)

    # post-process segmentation and evaluate with post-processing
    post_process_params = {'simple_post': True}
    images_post_processed = putil.post_process_batch(images_test,
                                                     images_prediction,
                                                     images_probabilities,
                                                     post_process_params,
                                                     multi_process=False)

    for i, img in enumerate(images_test):
        evaluator.evaluate(images_post_processed[i],
                           img.images[structure.BrainImageTypes.GroundTruth],
                           img.id_ + '-PP')

        # save results
        sitk.WriteImage(
            images_prediction[i],
            os.path.join(result_dir, images_test[i].id_ + '_SEG.mha'), True)
        sitk.WriteImage(
            images_post_processed[i],
            os.path.join(result_dir, images_test[i].id_ + '_SEG-PP.mha'), True)

    # use two writers to report the results
    os.makedirs(
        result_dir,
        exist_ok=True)  # generate result directory, if it does not exists
    result_file = os.path.join(result_dir, 'results.csv')
    writer.CSVWriter(result_file).write(evaluator.results)

    print('\nSubject-wise results...')
    writer.ConsoleWriter().write(evaluator.results)

    # report also mean and standard deviation among all subjects
    result_summary_file = os.path.join(result_dir, 'results_summary.csv')
    functions = {'MEAN': np.mean, 'STD': np.std}
    writer.CSVStatisticsWriter(result_summary_file,
                               functions=functions).write(evaluator.results)
    print('\nAggregated statistic results...')
    writer.ConsoleStatisticsWriter(functions=functions).write(
        evaluator.results)

    # clear results such that the evaluator is ready for the next evaluation
    evaluator.clear()
Exemplo n.º 3
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str, data_test_dir: str):
    """Brain tissue segmentation using decision forests.

    The main routine executes the medical image analysis pipeline:

        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images
        - Post-processing of the segmentation
        - Evaluation of the segmentation
    """

    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    print('-' * 5, 'Training...')

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_train_dir,
                                          LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())
    pre_process_params = {'skullstrip_pre': True,
                          'normalization_pre': True,
                          'registration_pre': True,
                          'coordinates_feature': True,
                          'intensity_feature': True,
                          'gradient_intensity_feature': True}

    # load images for training and pre-process
    images = putil.pre_process_batch(crawler.data, pre_process_params, multi_process=False)

    # generate feature matrix and label vector
    data_train = np.concatenate([img.feature_matrix[0] for img in images])
    labels_train = np.concatenate([img.feature_matrix[1] for img in images]).squeeze()

    warnings.warn('Random forest parameters not properly set.')
    # visualization(images)
    print(np.shape(images[0].feature_matrix[0]))
    dfs= []
    aggregated_results = []

    print('-' * 5, 'Testing...')
    crawler = futil.FileSystemDataCrawler(data_test_dir,
                                          LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())
    pre_process_params['training'] = False
    images_test = putil.pre_process_batch(crawler.data, pre_process_params, multi_process=False)


    for num_estimator in [10]:
        forest = sk_ensemble.RandomForestClassifier(max_features=images[0].feature_matrix[0].shape[1],
                                                    n_estimators=num_estimator,
                                                    max_depth=10)

        start_time = timeit.default_timer()
        forest.fit(data_train, labels_train)

        print(' Time elapsed:', timeit.default_timer() - start_time, 's')

        # create a result directory with timestamp
        t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
        result_dir = os.path.join(result_dir, t)

        os.makedirs(result_dir, exist_ok=True)

        print('-' * 5, 'Testing...')

        # initialize evaluator
        evaluator = putil.init_evaluator()

        # crawl the training image directories
        # crawler = futil.FileSystemDataCrawler(data_test_dir,
        #                                       LOADING_KEYS,
        #                                       futil.BrainImageFilePathGenerator(),
        #                                       futil.DataDirectoryFilter())

        # load images for testing and pre-process

        # data_test = np.concatenate([img.feature_matrix[0] for img in images_test])
        # labels_test = np.concatenate([img.feature_matrix[1] for img in images_test]).squeeze()

        # ax = plt.gca()
        # rfc_disp = plot_roc_curve(forest, data_test, labels_test, ax=ax, alpha=0.8)
        # svc_disp.plot(ax=ax, alpha=0.8)
        # disp = plot_confusion_matrix(forest, data_test, labels_test, normalize='true')
        # plt.show()

        # y = label_binarize(labels_test, classes=[0, 1, 2 , 3, 4 , 5])
        # n_classes = y.shape[1]


        images_prediction = []
        images_probabilities = []


        for img in images_test:
            print('-' * 10, 'Testing', img.id_)


            start_time = timeit.default_timer()
            predictions = forest.predict(img.feature_matrix[0])
            probabilities = forest.predict_proba(img.feature_matrix[0])
            print(' Time elapsed:', timeit.default_timer() - start_time, 's')

            # convert prediction and probabilities back to SimpleITK images
            image_prediction = conversion.NumpySimpleITKImageBridge.convert(predictions.astype(np.uint8),
                                                                            img.image_properties)
            image_probabilities = conversion.NumpySimpleITKImageBridge.convert(probabilities, img.image_properties)

            # evaluate segmentation without post-processing
            evaluator.evaluate(image_prediction, img.images[structure.BrainImageTypes.GroundTruth], img.id_)

            images_prediction.append(image_prediction)
            images_probabilities.append(image_probabilities)

        results=evaluator.results
        labels = sorted({result.label for result in results})
        metrics = sorted({result.metric for result in results})

        # functions = {'MEAN': np.mean, 'STD': np.std}
        functions = {'MEAN': np.mean}
        for label in labels:
            for metric in metrics:
                # search for results
                values = [r.value for r in results if r.label == label and r.metric == metric]


                for fn_id, fn in functions.items():
                    aggregated_results.append(
                        [num_estimator,
                        label,
                        metric,
                        float(fn(values))])

        # for result in aggregated_results:
        #     # print([result.label, result.metric, result.id_, result.value])
        #     print(result)


        # writer.ConsoleStatisticsWriter(functions=functions).write(evaluator.results)

        # clear results such that the evaluator is ready for the next evaluation
        evaluator.clear()
    df=pd.DataFrame(aggregated_results, columns=['n_estimators', 'label', 'metric', 'value'])
    return df
    xdf = df[df.label == 'WhiteMatter']
    del xdf['label']




    # new_df=df[df.label=='GreyMatter']
    # del new_df['label']
    # new_df.set_index('n_estimators', inplace=True)
    # fig, ax = plt.subplots(figsize=(15, 7))
    # new_df.groupby(['metric']).plot(ax=ax)
    # print(new_df)

    # plt.show()

    plt.figure(2)
    # pd.crosstab(index=[df['Name'], df['Date']], columns=new_df['metric'])
    my_df = pd.pivot_table(df,index=['label'], columns='metric', values='value')
    my_df.plot()
    print(my_df)
Exemplo n.º 4
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str,
         data_test_dir: str, tmp_result_dir: str):
    """Brain tissue segmentation using decision forests.

    Section of the original main routine. Executes post processing part of the medical image analysis pipeline:

        Must be done separately in advance:
        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images

        Is carried out in this section of the pipeline
        - Loading of temporary data
        - Post-processing of the segmentation
        - Evaluation of the segmentation
    """

    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    # print('-' * 5, 'Training...')
    #
    # # crawl the training image directories
    # crawler = futil.FileSystemDataCrawler(data_train_dir,
    #                                       LOADING_KEYS,
    #                                       futil.BrainImageFilePathGenerator(),
    #                                       futil.DataDirectoryFilter())
    pre_process_params = {
        'skullstrip_pre': True,
        'normalization_pre': True,
        'registration_pre': True,
        'coordinates_feature': True,
        'intensity_feature': True,
        'gradient_intensity_feature': True
    }

    # create a result directory with timestamp
    t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    result_dir = os.path.join(result_dir, t)
    os.makedirs(result_dir, exist_ok=True)

    # initialize evaluator
    evaluator = putil.init_evaluator()

    # crawl the test image directories
    crawler = futil.FileSystemDataCrawler(data_test_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())

    # load necessary data to perform post processing
    pre_process_params['training'] = False
    images_test = putil.pre_process_batch(crawler.data,
                                          pre_process_params,
                                          multi_process=False)

    # load the prediction of the test images (segmented image
    images_prediction, images_probabilities = putil.load_prediction_images(
        images_test, tmp_result_dir, '2020-10-30-18-31-15')
    # evaluate images without post-processing
    for i, img in enumerate(images_test):
        evaluator.evaluate(images_prediction[i],
                           img.images[structure.BrainImageTypes.GroundTruth],
                           img.id_)

    # post-process segmentation and evaluate with post-processing
    post_process_params = {
        'simple_post': True,
        'variance': 1.0,
        'preserve_background': False
    }
    images_post_processed = putil.post_process_batch(images_test,
                                                     images_prediction,
                                                     images_probabilities,
                                                     post_process_params,
                                                     multi_process=False)

    for i, img in enumerate(images_test):
        evaluator.evaluate(images_post_processed[i],
                           img.images[structure.BrainImageTypes.GroundTruth],
                           img.id_ + '-PP')

        # save results
        sitk.WriteImage(
            images_prediction[i],
            os.path.join(result_dir, images_test[i].id_ + '_SEG.mha'), True)
        sitk.WriteImage(
            images_post_processed[i],
            os.path.join(result_dir, images_test[i].id_ + '_SEG-PP.mha'), True)

    # use two writers to report the results
    os.makedirs(
        result_dir,
        exist_ok=True)  # generate result directory, if it does not exists
    result_file = os.path.join(result_dir, 'results.csv')
    writer.CSVWriter(result_file).write(evaluator.results)

    print('\nSubject-wise results...')
    writer.ConsoleWriter().write(evaluator.results)

    # report also mean and standard deviation among all subjects
    result_summary_file = os.path.join(result_dir, 'results_summary.csv')
    functions = {'MEAN': np.mean, 'STD': np.std}
    writer.CSVStatisticsWriter(result_summary_file,
                               functions=functions).write(evaluator.results)
    print('\nAggregated statistic results...')
    writer.ConsoleStatisticsWriter(functions=functions).write(
        evaluator.results)

    # clear results such that the evaluator is ready for the next evaluation
    evaluator.clear()
Exemplo n.º 5
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str,
         data_test_dir: str):
    """Brain tissue segmentation using decision forests.

    The main routine executes the medical image analysis pipeline:

        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images
        - Post-processing of the segmentation
        - Evaluation of the segmentation
    """

    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    print('-' * 5, 'Training...')

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_train_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())
    pre_process_params = {
        'skullstrip_pre': True,
        'normalization_pre': True,
        'registration_pre': True,
        'coordinates_feature': True,
        'intensity_feature': True,
        'gradient_intensity_feature': True
    }

    # load images for training and pre-process
    images = putil.pre_process_batch(crawler.data,
                                     pre_process_params,
                                     multi_process=False)

    # generate feature matrix and label vector
    data_train = np.concatenate([img.feature_matrix[0] for img in images])
    labels_train = np.concatenate([img.feature_matrix[1]
                                   for img in images]).squeeze()

    warnings.warn('Random forest parameters not properly set.')
    # visualization(images)
    print(np.shape(images[0].feature_matrix[0]))
    forest = sk_ensemble.RandomForestClassifier(
        max_features=images[0].feature_matrix[0].shape[1],
        n_estimators=10,
        max_depth=10)

    start_time = timeit.default_timer()
    # forest.fit(data_train, labels_train)

    print(' Time elapsed:', timeit.default_timer() - start_time, 's')

    # create a result directory with timestamp
    t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    result_dir = os.path.join(result_dir, t)

    os.makedirs(result_dir, exist_ok=True)

    print('-' * 5, 'Testing...')

    # initialize evaluator
    evaluator = putil.init_evaluator()

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_test_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())

    # load images for testing and pre-process
    pre_process_params['training'] = False
    images_test = putil.pre_process_batch(crawler.data,
                                          pre_process_params,
                                          multi_process=False)

    data_test = np.concatenate([img.feature_matrix[0] for img in images_test])
    labels_test = np.concatenate(
        [img.feature_matrix[1] for img in images_test]).squeeze()

    random_state = np.random.RandomState(0)
    # ax = plt.gca()
    # rfc_disp = plot_roc_curve(forest, data_test, labels_test, ax=ax, alpha=0.8)
    # svc_disp.plot(ax=ax, alpha=0.8)
    # disp = plot_confusion_matrix(forest, data_test, labels_test, normalize='true')
    # plt.show()
    X = np.concatenate((data_train, data_test))
    y = np.concatenate((labels_train, labels_test))
    y = label_binarize(y, classes=[0, 1, 2, 3, 4, 5])
    n_classes = y.shape[1]
    n_samples, n_features = X.shape

    X_train, X_test, y_train, y_test = train_test_split(X,
                                                        y,
                                                        test_size=.5,
                                                        random_state=0)

    # classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
    #                                          random_state=random_state))

    classifier = OneVsRestClassifier(
        sk_ensemble.RandomForestClassifier(
            max_features=images[0].feature_matrix[0].shape[1],
            n_estimators=10,
            max_depth=5))

    y_score = classifier.fit(X_train, y_train).predict(X_test)

    # Compute ROC curve and ROC area for each class
    fpr = dict()
    tpr = dict()
    roc_auc = dict()
    for i in range(n_classes):
        fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
        roc_auc[i] = auc(fpr[i], tpr[i])

    # Compute micro-average ROC curve and ROC area
    fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
    roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

    # First aggregate all false positive rates
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))

    # Then interpolate all ROC curves at this points
    mean_tpr = np.zeros_like(all_fpr)
    for i in range(n_classes):
        mean_tpr += interp(all_fpr, fpr[i], tpr[i])

    # Finally average it and compute AUC
    mean_tpr /= n_classes

    fpr["macro"] = all_fpr
    tpr["macro"] = mean_tpr
    roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])

    plt.figure()
    lw = 2
    plt.plot(fpr[2],
             tpr[2],
             color='darkorange',
             lw=lw,
             label='ROC curve (area = %0.2f)' % roc_auc[2])
    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
    plt.show()

    # Plot all ROC curves
    plt.figure()
    plt.plot(fpr["micro"],
             tpr["micro"],
             label='micro-average ROC curve (area = {0:0.2f})'
             ''.format(roc_auc["micro"]),
             color='deeppink',
             linestyle=':',
             linewidth=4)

    plt.plot(fpr["macro"],
             tpr["macro"],
             label='macro-average ROC curve (area = {0:0.2f})'
             ''.format(roc_auc["macro"]),
             color='navy',
             linestyle=':',
             linewidth=4)

    colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
    for i, color in zip(range(n_classes), colors):
        plt.plot(fpr[i],
                 tpr[i],
                 color=color,
                 lw=lw,
                 label='ROC curve of class {0} (area = {1:0.2f})'
                 ''.format(i, roc_auc[i]))

    plt.plot([0, 1], [0, 1], 'k--', lw=lw)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title(
        'Some extension of Receiver operating characteristic to multi-class')
    plt.legend(loc="lower right")
    plt.show()

    #
    # images_prediction = []
    # images_probabilities = []
    #
    #
    # for img in images_test:
    #     print('-' * 10, 'Testing', img.id_)
    #
    #
    #     start_time = timeit.default_timer()
    #     predictions = forest.predict(img.feature_matrix[0])
    #     probabilities = forest.predict_proba(img.feature_matrix[0])
    #     print(' Time elapsed:', timeit.default_timer() - start_time, 's')
    #
    #     # convert prediction and probabilities back to SimpleITK images
    #     image_prediction = conversion.NumpySimpleITKImageBridge.convert(predictions.astype(np.uint8),
    #                                                                     img.image_properties)
    #     image_probabilities = conversion.NumpySimpleITKImageBridge.convert(probabilities, img.image_properties)
    #
    #     # evaluate segmentation without post-processing
    #     evaluator.evaluate(image_prediction, img.images[structure.BrainImageTypes.GroundTruth], img.id_)
    #
    #     images_prediction.append(image_prediction)
    #     images_probabilities.append(image_probabilities)
    #
    #
    #
    #
    # # post-process segmentation and evaluate with post-processing
    # post_process_params = {'simple_post': True}
    # images_post_processed = putil.post_process_batch(images_test, images_prediction, images_probabilities,
    #                                                  post_process_params, multi_process=True)
    #
    # for i, img in enumerate(images_test):
    #     evaluator.evaluate(images_post_processed[i], img.images[structure.BrainImageTypes.GroundTruth],
    #                        img.id_ + '-PP')
    #
    #     # save results
    #     sitk.WriteImage(images_prediction[i], os.path.join(result_dir, images_test[i].id_ + '_SEG.mha'), True)
    #     sitk.WriteImage(images_post_processed[i], os.path.join(result_dir, images_test[i].id_ + '_SEG-PP.mha'), True)
    #
    # # use two writers to report the results
    # os.makedirs(result_dir, exist_ok=True)  # generate result directory, if it does not exists
    # result_file = os.path.join(result_dir, 'results.csv')
    # writer.CSVWriter(result_file).write(evaluator.results)
    #
    # print('\nSubject-wise results...')
    # writer.ConsoleWriter().write(evaluator.results)
    #
    # # report also mean and standard deviation among all subjects
    # result_summary_file = os.path.join(result_dir, 'results_summary.csv')
    # functions = {'MEAN': np.mean, 'STD': np.std}
    # writer.CSVStatisticsWriter(result_summary_file, functions=functions).write(evaluator.results)
    # print('\nAggregated statistic results...')
    # writer.ConsoleStatisticsWriter(functions=functions).write(evaluator.results)

    # clear results such that the evaluator is ready for the next evaluation
    evaluator.clear()
Exemplo n.º 6
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str,
         data_test_dir: str):
    """Brain tissue segmentation using decision forests.

    Section of the original main routine. Executes pre-processing and prediction part of the medical image
    analysis pipeline and and saves the temporary data:

        Is carried out in this section of the pipeline
        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images
        - Save prediction data

    """

    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    print('-' * 5, 'Training...')

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_train_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())
    pre_process_params = {
        'skullstrip_pre': True,
        'normalization_pre': True,
        'registration_pre': True,
        'coordinates_feature': True,
        'intensity_feature': True,
        'gradient_intensity_feature': True
    }

    # load images for training and pre-process
    images = putil.pre_process_batch(crawler.data,
                                     pre_process_params,
                                     multi_process=False)

    # generate feature matrix and label vector
    data_train = np.concatenate([img.feature_matrix[0] for img in images])
    labels_train = np.concatenate([img.feature_matrix[1]
                                   for img in images]).squeeze()

    warnings.warn('Random forest parameters not properly set.')
    forest = sk_ensemble.RandomForestClassifier(
        max_features=images[0].feature_matrix[0].shape[1],
        n_estimators=10,
        max_depth=10)

    start_time = timeit.default_timer()
    forest.fit(data_train, labels_train)
    print(' Time elapsed:', timeit.default_timer() - start_time, 's')

    # create a result directory with timestamp
    t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    result_dir = os.path.join(result_dir, t)
    os.makedirs(result_dir, exist_ok=True)

    print('-' * 5, 'Testing...')

    # initialize evaluator
    evaluator = putil.init_evaluator()

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_test_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())

    # load images for testing and pre-process
    pre_process_params['training'] = False
    images_test = putil.pre_process_batch(crawler.data,
                                          pre_process_params,
                                          multi_process=False)

    images_prediction = []
    images_probabilities = []

    for img in images_test:
        print('-' * 10, 'Testing', img.id_)

        start_time = timeit.default_timer()
        predictions = forest.predict(img.feature_matrix[0])
        probabilities = forest.predict_proba(img.feature_matrix[0])
        print(' Time elapsed:', timeit.default_timer() - start_time, 's')

        # convert prediction and probabilities back to SimpleITK images
        image_prediction = conversion.NumpySimpleITKImageBridge.convert(
            predictions.astype(np.uint8), img.image_properties)
        image_probabilities = conversion.NumpySimpleITKImageBridge.convert(
            probabilities, img.image_properties)

        # evaluate segmentation without post-processing
        evaluator.evaluate(image_prediction,
                           img.images[structure.BrainImageTypes.GroundTruth],
                           img.id_)

        images_prediction.append(image_prediction)
        images_probabilities.append(image_probabilities)

    # save all data used for post processing

    for i, img in enumerate(images_test):

        sitk.WriteImage(
            images_prediction[i],
            os.path.join(result_dir, images_test[i].id_ + '_SEG.mha'), True)
        sitk.WriteImage(
            images_probabilities[i],
            os.path.join(result_dir, images_test[i].id_ + '_PROB.mha'), True)

    evaluator.clear()
Exemplo n.º 7
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str,
         data_test_dir: str):
    """Brain tissue segmentation using decision forests.

    Section of the original main routine. Executes gird search of the probabilistic keyhole filling method parameters:

        Must be done separately in advance:
        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images

        Is carried out in this section of the pipeline
        - Loading of temporary data
        - Grid search of PKF parameter of the segmentation
        - Evaluation of the segmentation
    """

    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    print('-' * 5, 'Training...')

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_train_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())
    pre_process_params = {
        'skullstrip_pre': True,
        'normalization_pre': True,
        'registration_pre': True,
        'coordinates_feature': True,
        'intensity_feature': True,
        'gradient_intensity_feature': True
    }

    # load images for training and pre-process
    images = putil.pre_process_batch(crawler.data,
                                     pre_process_params,
                                     multi_process=False)

    # generate feature matrix and label vector
    data_train = np.concatenate([img.feature_matrix[0] for img in images])
    labels_train = np.concatenate([img.feature_matrix[1]
                                   for img in images]).squeeze()

    #warnings.warn('Random forest parameters not properly set.')
    forest = sk_ensemble.RandomForestClassifier(
        max_features=images[0].feature_matrix[0].shape[1],
        n_estimators=20,
        max_depth=85)

    start_time = timeit.default_timer()
    forest.fit(data_train, labels_train)
    print(' Time elapsed:', timeit.default_timer() - start_time, 's')

    # create a result directory with timestamp
    t = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    result_dir = os.path.join(result_dir, t)
    os.makedirs(result_dir, exist_ok=True)

    print('-' * 5, 'Testing...')

    # initialize evaluator
    evaluator = putil.init_evaluator()

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_test_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())

    # load images for testing and pre-process
    pre_process_params['training'] = False
    images_test = putil.pre_process_batch(crawler.data,
                                          pre_process_params,
                                          multi_process=False)

    images_prediction = []
    images_probabilities = []

    for img in images_test:
        print('-' * 10, 'Testing', img.id_)

        start_time = timeit.default_timer()
        predictions = forest.predict(img.feature_matrix[0])
        probabilities = forest.predict_proba(img.feature_matrix[0])
        print(' Time elapsed:', timeit.default_timer() - start_time, 's')

        # convert prediction and probabilities back to SimpleITK images
        image_prediction = conversion.NumpySimpleITKImageBridge.convert(
            predictions.astype(np.uint8), img.image_properties)
        image_probabilities = conversion.NumpySimpleITKImageBridge.convert(
            probabilities, img.image_properties)

        # evaluate segmentation without post-processing
        evaluator.evaluate(image_prediction,
                           img.images[structure.BrainImageTypes.GroundTruth],
                           img.id_)

        images_prediction.append(image_prediction)
        images_probabilities.append(image_probabilities)

    # save results without post-processing
    name = 'no_PP'
    sub_dir = os.path.join(result_dir, name)
    os.makedirs(sub_dir, exist_ok=True)

    for i, img in enumerate(images_test):
        sitk.WriteImage(images_prediction[i],
                        os.path.join(sub_dir, images_test[i].id_ + '_SEG.mha'),
                        True)

    result_file = os.path.join(sub_dir, 'results.csv')
    writer.CSVWriter(result_file).write(evaluator.results)

    # report also mean and standard deviation among all subjects
    result_summary_file = os.path.join(sub_dir, 'results_summary.csv')
    functions = {'MEAN': np.mean, 'STD': np.std}
    writer.CSVStatisticsWriter(result_summary_file,
                               functions=functions).write(evaluator.results)

    # clear results such that the evaluator is ready for the next evaluation
    evaluator.clear()

    # define paramter for grid search
    post_process_param_list = []
    variance = np.arange(1, 2)
    preserve_background = np.asarray([False])

    #
    # # define paramter for grid search
    # post_process_param_list = []
    # variance = np.arange(0.5, 4.0, 0.5)
    # preserve_background = np.asarray([False, True])

    for bg in preserve_background:
        for var in variance:
            post_process_param_list.append({
                'simple_post': bool(True),
                'variance': float(var),
                'preserve_background': bool(bg)
            })

    # execute post processing with definde parameters
    for post_process_params in post_process_param_list:

        # create sub-directory for results
        name = 'PP-V-'+ str(post_process_params.get('variance')).replace('.','_') +\
               '-BG-' + str(post_process_params.get('preserve_background'))
        sub_dir = os.path.join(result_dir, name)
        os.makedirs(sub_dir, exist_ok=True)

        #write the used parameter into a text file and store it in the result folder
        completeName = os.path.join(sub_dir, "parameter.txt")
        file1 = open(completeName, "w+")
        json.dump(post_process_params, file1)
        file1.close()

        # post-process segmentation and evaluate with post-processing
        images_post_processed = putil.post_process_batch(images_test,
                                                         images_prediction,
                                                         images_probabilities,
                                                         post_process_params,
                                                         multi_process=False)

        for i, img in enumerate(images_test):
            evaluator.evaluate(
                images_post_processed[i],
                img.images[structure.BrainImageTypes.GroundTruth],
                img.id_ + '-PP')
            # save results
            sitk.WriteImage(
                images_post_processed[i],
                os.path.join(sub_dir, images_test[i].id_ + '_SEG-PP.mha'),
                True)

        # save all results in csv file
        result_file = os.path.join(sub_dir, 'results.csv')
        writer.CSVWriter(result_file).write(evaluator.results)

        print('\nSubject-wise results...')
        writer.ConsoleWriter().write(evaluator.results)

        # report also mean and standard deviation among all subjects
        result_summary_file = os.path.join(sub_dir, 'results_summary.csv')
        functions = {'MEAN': np.mean, 'STD': np.std}
        writer.CSVStatisticsWriter(
            result_summary_file, functions=functions).write(evaluator.results)
        print('\nAggregated statistic results...')
        writer.ConsoleStatisticsWriter(functions=functions).write(
            evaluator.results)

        # clear results such that the evaluator is ready for the next evaluation
        evaluator.clear()
Exemplo n.º 8
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str,
         data_test_dir: str):
    """Brain tissue segmentation using decision forests.

    The main routine executes the medical image analysis pipeline:

        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images
        - Post-processing of the segmentation
        - Evaluation of the segmentation
    """

    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    print('-' * 5, 'Training...')

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_train_dir, LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())
    pre_process_params = {
        'skullstrip_pre': True,
        'normalization_pre': True,
        'registration_pre': True,
        'coordinates_feature': True,
        'intensity_feature': True,
        'gradient_intensity_feature': True
    }

    # load images for training and pre-process
    images = putil.pre_process_batch(crawler.data,
                                     pre_process_params,
                                     multi_process=False)

    # generate feature matrix and label vector
    data_train = np.concatenate([img.feature_matrix[0] for img in images])
    labels_train = np.concatenate([img.feature_matrix[1]
                                   for img in images]).squeeze()

    warnings.warn('Random forest parameters not properly set.')
    # visualization(images)
    print(np.shape(images[0].feature_matrix[0]))

    error_rate = []
    for num_estimators in range(1, 10):
        forest = sk_ensemble.RandomForestClassifier(
            max_features=images[0].feature_matrix[0].shape[1],
            n_estimators=num_estimators,
            max_depth=10,
            oob_score=True)

        # start_time = timeit.default_timer()
        forest.fit(data_train, labels_train)

        oob_error = 1 - forest.oob_score_
        print(forest.oob_score_)
        error_rate += [oob_error]

    plt.plot(range(1, 10), error_rate)
    plt.show()
Exemplo n.º 9
0
def main(result_dir: str, data_atlas_dir: str, data_train_dir: str, data_test_dir: str, parameters_file: str):
    """Brain tissue segmentation using decision forests.

    The main routine executes the medical image analysis pipeline:

        - Image loading
        - Registration
        - Pre-processing
        - Feature extraction
        - Decision forest classifier model building
        - Segmentation using the decision forest classifier model on unseen images
        - Post-processing of the segmentation
        - Evaluation of the segmentation
    """
    start_main = timeit.default_timer()
    # load atlas images
    putil.load_atlas_images(data_atlas_dir)

    print('-' * 5, 'Training...')

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_train_dir,
                                          LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())

    fof_parameters = {'10Percentile': True,
                      '90Percentile': True,
                      'Energy': True,
                      'Entropy': True,
                      'InterquartileRange': True,
                      'Kurtosis': True,
                      'Maximum': True,
                      'MeanAbsoluteDeviation': True,
                      'Mean': True,
                      'Median': True,
                      'Minimum': True,
                      'Range': True,
                      'RobustMeanAbsoluteDeviation': True,
                      'RootMeanSquared': True,
                      'Skewness': True,
                      'TotalEnergy': True,
                      'Uniformity': True,
                      'Variance': True}

    glcm_parameters = {'Autocorrelation': True,
                       'ClusterProminence': True,
                       'ClusterShade': True,
                       'ClusterTendency': True,
                       'Contrast': True,
                       'Correlation': True,
                       'DifferenceAverage': True,
                       'DifferenceEntropy': True,
                       'DifferenceVariance': True,
                       'Id': True,
                       'Idm': True,
                       'Idmn': True,
                       'Idn': True,
                       'Imc1': True,
                       'Imc2': True,
                       'InverseVariance': True,
                       'JointAverage': True,
                       'JointEnergy': True,
                       'JointEntropy': True,
                       'MCC': True,
                       'MaximumProbability': True,
                       'SumAverage': True,
                       'SumEntropy': True,
                       'SumSquares': True}

    pre_process_params = {'skullstrip_pre': True,
                          'normalization_pre': True,
                          'registration_pre': True,
                          'save_features': False,
                          'coordinates_feature': True,
                          'intensity_feature': False,
                          'gradient_intensity_feature': False,
                          'first_order_feature': False,
                          'first_order_feature_parameters': fof_parameters,
                          'HOG_feature': False,
                          'GLCM_features': False,
                          'GLCM_features_parameters': glcm_parameters,
                          'n_estimators': 50,
                          'max_depth': 60,
                          'experiment_name': 'default'
                          }

    parameters = json.load(open(parameters_file, 'r'))
    if bool(parameters):
        pre_process_params = parameters

    # load images for training and pre-process
    images = putil.pre_process_batch(crawler.data, pre_process_params, multi_process=False)

    # generate feature matrix and label vector
    data_train = np.concatenate([img.feature_matrix[0] for img in images])
    labels_train = np.concatenate([img.feature_matrix[1] for img in images]).squeeze()
    np.nan_to_num(data_train, copy=False)

    # warnings.warn('Random forest parameters not properly set.')
    forest = sk_ensemble.RandomForestClassifier(max_features=images[0].feature_matrix[0].shape[1],
                                                n_estimators=pre_process_params['n_estimators'],  # 100
                                                max_depth=pre_process_params['max_depth'])  # 10

    # Debugging

    nan_data_idx = np.argwhere(np.isnan(data_train))
    np.savez('data_train.npz', data_train)
    np.save('data_nan.npy', nan_data_idx)

    start_time = timeit.default_timer()
    forest.fit(data_train, labels_train)
    print(' Time elapsed:', timeit.default_timer() - start_time, 's')

    # create a result directory with timestamp
    result_dir = os.path.join(result_dir, pre_process_params['experiment_name'])
    os.makedirs(result_dir, exist_ok=True)

    print('-' * 5, 'Testing...')

    # initialize evaluator
    evaluator = putil.init_evaluator()

    # crawl the training image directories
    crawler = futil.FileSystemDataCrawler(data_test_dir,
                                          LOADING_KEYS,
                                          futil.BrainImageFilePathGenerator(),
                                          futil.DataDirectoryFilter())

    # load images for testing and pre-process
    pre_process_params['training'] = False
    images_test = putil.pre_process_batch(crawler.data, pre_process_params, multi_process=False)

    images_prediction = []
    images_probabilities = []

    for img in images_test:
        print('-' * 10, 'Testing', img.id_)

        start_time = timeit.default_timer()
        predictions = forest.predict(np.nan_to_num(img.feature_matrix[0],copy=False))
        probabilities = forest.predict_proba(np.nan_to_num(img.feature_matrix[0],copy=False))
        print(' Time elapsed:', timeit.default_timer() - start_time, 's')

        # convert prediction and probabilities back to SimpleITK images
        image_prediction = conversion.NumpySimpleITKImageBridge.convert(predictions.astype(np.uint8),
                                                                        img.image_properties)
        image_probabilities = conversion.NumpySimpleITKImageBridge.convert(probabilities, img.image_properties)

        # evaluate segmentation without post-processing
        evaluator.evaluate(image_prediction, img.images[structure.BrainImageTypes.GroundTruth], img.id_)

        images_prediction.append(image_prediction)
        images_probabilities.append(image_probabilities)

    # post-process segmentation and evaluate with post-processing
    post_process_params = {'simple_post': True}
    images_post_processed = putil.post_process_batch(images_test, images_prediction, images_probabilities,
                                                     post_process_params, multi_process=False)

    for i, img in enumerate(images_test):
        evaluator.evaluate(images_post_processed[i], img.images[structure.BrainImageTypes.GroundTruth],
                           img.id_ + '-PP')

        # save results
        sitk.WriteImage(images_prediction[i], os.path.join(result_dir, images_test[i].id_ + '_SEG.mha'), True)
        sitk.WriteImage(images_post_processed[i], os.path.join(result_dir, images_test[i].id_ + '_SEG-PP.mha'), True)

    # use two writers to report the results
    os.makedirs(result_dir, exist_ok=True)  # generate result directory, if it does not exists
    result_file = os.path.join(result_dir, 'results.csv')
    writer.CSVWriter(result_file).write(evaluator.results)

    print('\nSubject-wise results...')
    writer.ConsoleWriter().write(evaluator.results)

    # report also mean and standard deviation among all subjects
    result_summary_file = os.path.join(result_dir, 'results_summary.csv')
    functions = {'MEAN': np.mean, 'STD': np.std}
    writer.CSVStatisticsWriter(result_summary_file, functions=functions).write(evaluator.results)
    print('\nAggregated statistic results...')
    writer.ConsoleStatisticsWriter(functions=functions).write(evaluator.results)

    # clear results such that the evaluator is ready for the next evaluation
    evaluator.clear()
    end_main = timeit.default_timer()
    main_time = end_main - start_main

    # writing information on a txt file
    reporter.feature_writer(result_dir, pre_process_params, main_time, 'feature_report')