Exemplo n.º 1
0
def processImage(iset, sub, imagePath, imageRoot, band, radianceToReflectance):
    '''Does 4 steps: converts raw image to radiance based on metadata, converts radiance to relfectance based on panel calibration, un-distorts based on lens correction, and adds metadata to output'''
    outnm = 'Output\\%04i_%s_%s_%s_radiance.tiff' % (band, iset, sub,
                                                     imageRoot)
    img = image.Image(imagePath)
    outImg = img.undistorted(img.reflectance(radianceToReflectance))
    rows, cols = outImg.shape
    driver = gdal.GetDriverByName('GTiff')
    outRaster = driver.Create(outnm, cols, rows, 1, gdal.GDT_Float32)

    outband = outRaster.GetRasterBand(1)
    outband.WriteArray(outImg[:, :])
    outband.FlushCache()

    tagsToCopy = ["EXIF:GPSAltitude"]  #,
    # "EXIF:GPSAltitudeRef",
    # "EXIF:GPSDOP",
    # "EXIF:GPSLatitude",
    # "EXIF:GPSLatitudeRef",
    # "EXIF:GPSLongitude",
    # "EXIF:GPSLongitudeRef",
    # "EXIF:GPSVersionID"
    # ]
    print("Copying")
    meta = metadata.Metadata(imagePath,
                             exiftoolPath=os.environ['exiftoolpath'])
    meta.copy(outnm, tagsToCopy)

    printExif(imagePath, tagsToCopy)
    printExif(outnm, tagsToCopy)
Exemplo n.º 2
0
def reading_gain_exposure(image_path, ms_ext='tif', sub_dir=False):

    columns = ['image', 'gain', 'exposure', 'dls_gain', 'dls_exposure']
    data_list = []

    if image_path.endswith(ms_ext) or image_path.endswith(
            'tiff'):  # loading only one image
        names_list = image_path
    elif sub_dir:
        names_list = [
            f for f in sorted(
                glob.glob(image_path + "/**/*." + ms_ext, recursive=True))
        ]
    else:
        names_list = [
            f for f in sorted(
                glob.glob(image_path + "/*." + ms_ext, recursive=True))
        ]

    for n, im in enumerate(names_list):

        meta = metadata.Metadata(im)
        name = meta.get_item('File:FileName')[:-4]
        gain = meta.get_item('XMP:Gain')
        exposure = meta.get_item('XMP:Exposure')
        dls_gain = meta.get_item('XMP:IrradianceGain')
        dls_exposure = meta.get_item('XMP:IrradianceExposureTime')

        row = [name, gain, exposure, dls_gain, dls_exposure]
        data_list.append(row)
        print('image {} out of {}'.format(n + 1, len(names_list)))

    df = pd.DataFrame(data_list, index=None, columns=columns)

    return df
Exemplo n.º 3
0
def createJson(filename, bombCoors):
    filepath = directory + filename
    img = metadata.Metadata(filepath)
    lat = img.get_item('Composite:GPSLatitude')
    long = img.get_item('Composite:GPSLongitude')
    yaw, pitch, roll = img.dls_pose()
    alt = img.get_item('Composite:GPSAltitude')
    elevation = getElevation(str(lat),str(long))
    GPS, bombs = checkingIfBomb(getGPS(img, elevation, lat, long, alt), bombCoors)
    image_name = filename.split('.')[0][:-2] + '_stacked.tiff'
    data = {
        "image_name" : image_name,
        "yaw" : yaw,
        "pitch" : pitch,
        "roll": roll,
        "height" : alt - elevation, 
        "GPS" : [
            {"area" : "center", "lat" : lat, "long": long},
            {"area": "top right", "lat" :GPS[0][0], "long": GPS[0][1]},
            {"area": "top left", "lat" :GPS[1][0], "long": GPS[1][1]},
            {"area": "bottom right", "lat" :GPS[2][0], "long": GPS[2][1]},
            {"area": "bottom left", "lat" :GPS[3][0], "long": GPS[3][1]}
        ],
        "bombs" : [
        ],
    }
    for index, bomb in enumerate(bombs):
        item = {"id" : index , "lat" : bomb[0], "long" : bomb[1]}
        data["bombs"].append(item)
    
    print(json.dumps(data, indent=4, sort_keys=True))
    print()
    meta_json = os.path.join('stacked', 'metadata.json')
    with open(meta_json) as json_file:
        curr_data = json.load(json_file)
        
        temp= curr_data["images"]
        if( len(temp) == 0):
            temp.append(data)
        else:
            append = True
            for image in temp:
                if(image["image_name"] == data["image_name"]):
                    append = False
            if append:
                temp.append(data)
  
    write_json(curr_data, meta_json)
    def __init__(self, image_path):
        if not os.path.isfile(image_path):
            raise IOError("Provided path is not a file: {}".format(image_path))
        self.path = image_path
        self.meta = metadata.Metadata(self.path)

        if not self.meta.supports_radiometric_calibration():
            raise ValueError(
                'Library requires images taken with camera firmware v2.1.0 or later. '
                + 'Upgrade your camera firmware to use this library.')

        self.utc_time = self.meta.utc_time()
        self.latitude, self.longitude, self.altitude = self.meta.position()
        self.dls_present = self.meta.dls_present()
        self.dls_yaw, self.dls_pitch, self.dls_roll = self.meta.dls_pose()
        self.dls_irradiance = self.meta.dls_irradiance()
        self.capture_id = self.meta.capture_id()
        self.flight_id = self.meta.flight_id()
        self.band_name = self.meta.band_name()
        self.band_index = self.meta.band_index()
        self.black_level = self.meta.black_level()
        self.radiometric_cal = self.meta.radiometric_cal()
        self.exposure_time = self.meta.exposure()
        self.gain = self.meta.gain()
        self.bits_per_pixel = self.meta.bits_per_pixel()
        self.vignette_center = self.meta.vignette_center()
        self.vignette_polynomial = self.meta.vignette_polynomial()
        self.distortion_parameters = self.meta.distortion_parameters()
        self.principal_point = self.meta.principal_point()
        self.focal_plane_resolution_px_per_mm = self.meta.focal_plane_resolution_px_per_mm(
        )
        self.focal_length = self.meta.focal_length_mm()
        self.center_wavelength = self.meta.center_wavelength()
        self.bandwidth = self.meta.bandwidth()

        if self.bits_per_pixel != 16:
            NotImplemented("Unsupported pixel bit depth: {} bits".format(
                self.bits_per_pixel))

        self.__raw_image = None  # pure raw pixels
        self.__intensity_image = None  # black level and gain-exposure/radiometric compensated
        self.__radiance_image = None  # calibrated to radiance
        self.__reflectance_image = None  # calibrated to reflectance (0-1)
        self.__reflectance_irradiance = None
        self.__undistorted_source = None  # can be any of raw, intensity, radiance
        self.__undistorted_image = None  # current undistorted image, depdining on source
Exemplo n.º 5
0
def sortImageryByAlt(path, cutoffElev):
    '''sort imagery into lists of panel images or flight images'''
    data = {}
    count = 0
    for i in range(100):
        for typ in ['SET', 'DUP']:
            iset = '%04i%s' % (i, typ)
            if os.path.exists(os.path.join(path, iset)):
                for j in range(100):
                    sub = '%03i' % j
                    if os.path.exists(os.path.join(path, iset, sub)):
                        images = []
                        panels = []
                        for img in range(2001):
                            fname = 'IMG_%04i_*.tif' % (img)
                            found = True
                            for band in range(1, 6):
                                imageryPath = os.path.join(
                                    path, iset, sub,
                                    fname.replace("*", str(band)))
                                if os.path.exists(imageryPath):
                                    count += 1
                                else:
                                    found = False
                            print(count, imageryPath, "complete:", found)
                            if found:
                                meta = metadata.Metadata(
                                    imageryPath,
                                    exiftoolPath=os.environ['exiftoolpath'])
                                if meta.position()[2] > cutoffElev:
                                    images.append(fname)
                                else:
                                    panels.append(fname)
                        for k in [images, panels]:
                            if k:
                                if iset not in data: data[iset] = {}
                                if sub not in data[iset]: data[iset][sub] = {}
                        if images:
                            data[iset][sub]['images'] = images
                        if panels:
                            data[iset][sub]['panels'] = panels

    return data
Exemplo n.º 6
0
def updateDatabase(filename, bombCoors):
	filepath = directory + filename
	img = metadata.Metadata(filepath)
	lat = img.get_item('Composite:GPSLatitude')
	lon = img.get_item('Composite:GPSLongitude')
	yaw, pitch, roll = img.dls_pose()
	alt = img.get_item('Composite:GPSAltitude')
	elevation = getElevation(str(lat),str(lon))
	
	image_name = filename.split('.')[0][:-2] + '_stacked.tiff'
	
	image_id = newImgId()
	
	statement = "INSERT INTO  images (image_id, image_name, yaw, pitch, roll, height) VALUES(" + str(image_id) + ", '"+  image_name  + "', " + str(yaw) + "," + str(pitch) + "," + str(roll) +  "," + str(height) + ")"
	
	result = db.query_db (statement, 'EDIT')
	
	GPS, bombs = checkingIfBomb(getGPS(img, elevation, lat, lon, alt), bombCoors)
	
	updateGps(image_id, GPS, lat, lon)
	updateBombs(image_id, bombs)
Exemplo n.º 7
0
def meta_v3():
    image_path = os.path.join('data', '0001SET', '000')
    return metadata.Metadata(os.path.join(image_path, 'IMG_0002_4.tif'))
Exemplo n.º 8
0
def meta():
    image_path = os.path.join('data', '0000SET', '000')
    return metadata.Metadata(os.path.join(image_path, 'IMG_0000_1.tif'))
Exemplo n.º 9
0
    def __init__(self, image_path, exiftool_obj=None):
        if not os.path.isfile(image_path):
            raise IOError("Provided path is not a file: {}".format(image_path))
        self.path = image_path
        self.meta = metadata.Metadata(self.path, exiftool_obj=exiftool_obj)

        if self.meta.band_name() is None:
            raise ValueError("Provided file path does not have a band name: {}".format(image_path))
        if self.meta.band_name().upper() != 'LWIR' and not self.meta.supports_radiometric_calibration():
            raise ValueError('Library requires images taken with RedEdge-(3/M/MX) camera firmware v2.1.0 or later. ' +
                             'Upgrade your camera firmware to at least version 2.1.0 to use this library with RedEdge-(3/M/MX) cameras.')

        self.utc_time = self.meta.utc_time()
        self.latitude, self.longitude, self.altitude = self.meta.position()
        self.location = (self.latitude, self.longitude, self.altitude)
        self.dls_present = self.meta.dls_present()
        self.dls_yaw, self.dls_pitch, self.dls_roll = self.meta.dls_pose()
        self.capture_id = self.meta.capture_id()
        self.flight_id = self.meta.flight_id()
        self.band_name = self.meta.band_name()
        self.band_index = self.meta.band_index()
        self.black_level = self.meta.black_level()
        if self.meta.supports_radiometric_calibration():
            self.radiometric_cal = self.meta.radiometric_cal()
        self.exposure_time = self.meta.exposure()
        self.gain = self.meta.gain()
        self.bits_per_pixel = self.meta.bits_per_pixel()

        self.vignette_center = self.meta.vignette_center()
        self.vignette_polynomial = self.meta.vignette_polynomial()
        self.distortion_parameters = self.meta.distortion_parameters()
        self.principal_point = self.meta.principal_point()
        self.focal_plane_resolution_px_per_mm = self.meta.focal_plane_resolution_px_per_mm()
        self.focal_length = self.meta.focal_length_mm()
        self.focal_length_35 = self.meta.focal_length_35_mm_eq()
        self.center_wavelength = self.meta.center_wavelength()
        self.bandwidth = self.meta.bandwidth()
        self.rig_relatives = self.meta.rig_relatives()
        self.spectral_irradiance = self.meta.spectral_irradiance()

        self.auto_calibration_image = self.meta.auto_calibration_image()
        self.panel_albedo = self.meta.panel_albedo()
        self.panel_region = self.meta.panel_region()
        self.panel_serial = self.meta.panel_serial()

        if self.dls_present:
            self.dls_orientation_vector = np.array([0, 0, -1])
            self.sun_vector_ned, \
            self.sensor_vector_ned, \
            self.sun_sensor_angle, \
            self.solar_elevation, \
            self.solar_azimuth = dls.compute_sun_angle(self.location,
                                                       self.meta.dls_pose(),
                                                       self.utc_time,
                                                       self.dls_orientation_vector)
            self.angular_correction = dls.fresnel(self.sun_sensor_angle)

            # when we have good horizontal irradiance the camera provides the solar az and el also
            if self.meta.scattered_irradiance() != 0 and self.meta.direct_irradiance() != 0:
                self.solar_azimuth = self.meta.solar_azimuth()
                self.solar_elevation = self.meta.solar_elevation()
                self.scattered_irradiance = self.meta.scattered_irradiance()
                self.direct_irradiance = self.meta.direct_irradiance()
                self.direct_to_diffuse_ratio = self.meta.direct_irradiance() / self.meta.scattered_irradiance()
                self.estimated_direct_vector = self.meta.estimated_direct_vector()
                if self.meta.horizontal_irradiance_valid():
                    self.horizontal_irradiance = self.meta.horizontal_irradiance()
                else:
                    self.horizontal_irradiance = self.compute_horizontal_irradiance_dls2()
            else:
                self.direct_to_diffuse_ratio = 6.0  # assumption
                self.horizontal_irradiance = self.compute_horizontal_irradiance_dls1()

            self.spectral_irradiance = self.meta.spectral_irradiance()
        else:  # no dls present or LWIR band: compute what we can, set the rest to 0
            self.dls_orientation_vector = np.array([0, 0, -1])
            self.sun_vector_ned, \
            self.sensor_vector_ned, \
            self.sun_sensor_angle, \
            self.solar_elevation, \
            self.solar_azimuth = dls.compute_sun_angle(self.location,
                                                       (0, 0, 0),
                                                       self.utc_time,
                                                       self.dls_orientation_vector)
            self.angular_correction = dls.fresnel(self.sun_sensor_angle)
            self.horizontal_irradiance = 0
            self.scattered_irradiance = 0
            self.direct_irradiance = 0
            self.direct_to_diffuse_ratio = 0

        # Internal image containers; these can use a lot of memory, clear with Image.clear_images
        self.__raw_image = None  # pure raw pixels
        self.__intensity_image = None  # black level and gain-exposure/radiometric compensated
        self.__radiance_image = None  # calibrated to radiance
        self.__reflectance_image = None  # calibrated to reflectance (0-1)
        self.__reflectance_irradiance = None
        self.__undistorted_source = None  # can be any of raw, intensity, radiance
        self.__undistorted_image = None  # current undistorted image, depdining on source
Exemplo n.º 10
0
 sbr_G = 0
 sbr_R = 0
 sbr_E = 0
 sbr_N = 0
 # Num of each band's radiance
 nbr_B = 0
 nbr_G = 0
 nbr_R = 0
 nbr_E = 0
 nbr_N = 0
 for im in imageFiles:
     # Read raw image DN values
     imageName = filePath + os.sep + "low_altitude" + os.sep + im
     imageRaw = plt.imread(imageName)
     print("Processing %s" % imageName)
     meta = metadata.Metadata(imageName, exiftoolPath=exiftoolPath)
     bandName = meta.get_item('XMP:BandName')
     radianceImage, L, V, R = msutils.raw_image_to_radiance(meta, imageRaw)
     panel_coords = panelDetect(imageName, black_th, cont_th)
     print('Panel Coords', panel_coords[0][0][0])
     # Extract coordinates
     if panel_coords[0][0][0]:
         nw_x = int(panel_coords[0][0][0])
         nw_y = int(panel_coords[0][0][1])
         sw_x = int(panel_coords[1][0][0])
         sw_y = int(panel_coords[1][0][1])
         se_x = int(panel_coords[2][0][0])
         se_y = int(panel_coords[2][0][1])
         ne_x = int(panel_coords[3][0][0])
         ne_y = int(panel_coords[3][0][1])
         x_min = numpy.min([nw_x, sw_x, ne_x, se_x])
Exemplo n.º 11
0
def get_band(image):
    meta = metadata.Metadata(image, exiftoolPath=exiftoolPath)
    band = meta.get_item('XMP:BandName')
    return band
Exemplo n.º 12
0
#PREFLIGHT CALIBRATION IMAGES
##############
#Band 1 (Blue)
#Plotting
imageName = os.path.join(CalibrationFolder_preflight, 'IMG_0002_1.tif')
imageRaw = plt.imread(
    imageName).T  # Read raw image DN values - 16 bit tif only
plt.imshow(imageRaw.T, cmap='gray')
plotutils.colormap('viridis')
# Optional: pick a color map: 'gray, viridis, plasma, inferno, magma, nipy_spectral'
fig = plotutils.plotwithcolorbar(imageRaw.T,
                                 title='Raw image values with colorbar')

#Image metadata
meta = metadata.Metadata(imageName, exiftoolPath=exiftoolPath)
bandName = meta.get_item('XMP:BandName')

#Converting raw images to Radiance
radianceImage, L, V, R = msutils.raw_image_to_radiance(meta, imageRaw.T)
plotutils.plotwithcolorbar(V, 'Vignette Factor')
plotutils.plotwithcolorbar(R, 'Row Gradient Factor')
plotutils.plotwithcolorbar(V * R, 'Combined Corrections')
plotutils.plotwithcolorbar(L, 'Vignette and row gradient corrected raw values')
plotutils.plotwithcolorbar(radianceImage,
                           'All factors applied and scaled to radiance')

#Mask to panel and calculate radiance
markedImg = radianceImage.copy()
ulx = 510  # upper left column (x coordinate) of panel area
uly = 350  # upper left row (y coordinate) of panel area
Exemplo n.º 13
0
     panelSize = 0
     panelSize = panelSizeEval(imageName, black_th)
     if panelSize > 0:
         pSizeList.append(panelSize)
 pSizeArray = numpy.asarray(pSizeList)
 bn = int((pSizeArray.max() - pSizeArray.min()) / 5)
 hist, bin_edges = numpy.histogram(pSizeList, bins=bn, density=False)
 cont_th = bin_edges[numpy.argmax(hist) + 1]
 print("Panel contour size is close to %s" % (int)(cont_th))
 #
 for im in imageFiles:
     # Read raw image DN values
     imageName = filePath + "\\low_altitude\\" + im
     imageRaw = plt.imread(imageName)
     print("Processing %s" % imageName)
     meta = metadata.Metadata(imageName, exiftoolPath=exiftoolPath)
     bandName = meta.get_item('XMP:BandName')
     radianceImage, L, V, R = msutils.raw_image_to_radiance(meta, imageRaw)
     panel_coords = panelDetect(imageName, black_th, (int)(cont_th))
     # Extract coordinates
     if panel_coords[0][0][0]:
         nw_x = int(panel_coords[0][0][0])
         nw_y = int(panel_coords[0][0][1])
         sw_x = int(panel_coords[1][0][0])
         sw_y = int(panel_coords[1][0][1])
         se_x = int(panel_coords[2][0][0])
         se_y = int(panel_coords[2][0][1])
         ne_x = int(panel_coords[3][0][0])
         ne_y = int(panel_coords[3][0][1])
         x_min = numpy.min([nw_x, sw_x, ne_x, se_x])
         x_max = numpy.max([nw_x, sw_x, ne_x, se_x])
Exemplo n.º 14
0
import numpy as np
import cv2
import micasense.utils as msutils
import micasense.metadata as metadata
import exiftool
import matplotlib.pyplot as plt
import os,glob
import math


exiftoolPath = None
if os.name == 'nt':
    exiftoolPath = 'C:/exiftool/exiftool.exe'

imageRaw = '/mnt/114e4710-77b7-4a37-a8f6-0177deea301b/Desktop/Link to Mine/MicaSense/imageprocessing-master/data/0000SET/000/IMG_0001_3.tif'
meta = metadata.Metadata(imageRaw)
radianceImage, _,_,_,_ = msutils.raw_image_to_radiance(meta, imageRaw)
plotutils.plotwithcolorbar(V,'Vignette Factor')
plotutils.plotwithcolorbar(R,'Row Gradient Factor')
plotutils.plotwithcolorbar(V*R,'Combined Corrections')
plotutils.plotwithcolorbar(L,'Vignette and row gradient corrected raw values')
plotutils.plotwithcolorbar(radianceImage,'All factors applied and scaled to radiance')
Exemplo n.º 15
0
    # Define DLS sensor orientation vector relative to dls pose frame
    dls_orientation_vector = np.array([0, 0, -1])
    # compute sun orientation and sun-sensor angles
    (
        sun_vector_ned,  # Solar vector in North-East-Down coordinates
        sensor_vector_ned,  # DLS vector in North-East-Down coordinates
        sun_sensor_angle,  # Angle between DLS vector and sun vector
        solar_elevation,  # Elevation of the sun above the horizon
        solar_azimuth,  # Azimuth (heading) of the sun
    ) = dls.compute_sun_angle(cap.location(), cap.dls_pose(), cap.utc_time(),
                              dls_orientation_vector)

    # Get Spectral Irradiance (= Sun Sensor Irradiance) for each image from its metadata
    spectral_irradiances = []

    meta = metadata.Metadata(raw_image, exiftoolPath=None)
    spectral_irradiances.append(meta.get_item('XMP:Irradiance'))

    # With Solar elements & Spectral Irradiance
    # Now we can correct the raw sun sensor irradiance value (DLS)
    # and compute the irradiance on level ground

    dls_irradiances = []

    fresnel_correction = dls.fresnel(sun_sensor_angle)
    dir_dif_ratio = 6.0  # Default value from MicaSense
    percent_diffuse = 1.0 / dir_dif_ratio
    sensor_irradiance = spectral_irradiances / fresnel_correction
    untilted_direct_irr = sensor_irradiance / (percent_diffuse +
                                               np.cos(sun_sensor_angle))
Exemplo n.º 16
0
def meta_bad_exposure():
    image_path = os.path.join('data', '0001SET', '000')
    return metadata.Metadata(os.path.join(image_path, 'IMG_0003_1.tif'))
Exemplo n.º 17
0
def meta_altum_dls2(altum_flight_image_name):
    return metadata.Metadata(altum_flight_image_name)
Exemplo n.º 18
0
import micasense.plotutils as plotutils
import micasense.utils as msutils
import micasense.metadata as metadata

sys.path.append('C:/Users/Isaac Miller/Documents/GitHub/imageprocessing')

exiftoolPath = None
if os.name == 'nt':
    exiftoolPath = 'C:/exiftool/exiftool.exe'

#  get calibration
panelPath = os.path.join('.', 'data', '0000SET', '000')
panelName = glob.glob(os.path.join(panelPath, 'IMG_0000_1.tif'))[0]

panelRaw = plt.imread(panelName)
panelMeta = metadata.Metadata(panelName, exiftoolPath=exiftoolPath)
radianceImage, L, V, R = msutils.raw_image_to_radiance(panelMeta, panelRaw)
plotutils.plotwithcolorbar(V, 'Vignette Factor')
plotutils.plotwithcolorbar(R, 'Row Gradient Factor')
plotutils.plotwithcolorbar(V * R, 'Combined Corrections')
plotutils.plotwithcolorbar(L, 'Vignette and row gradient corrected raw values')
plotutils.plotwithcolorbar(radianceImage,
                           'All factors applied and scaled to radiance')
markedImg = radianceImage.copy()
ulx = 660  # upper left column (x coordinate) of panel area
uly = 490  # upper left row (y coordinate) of panel area
lrx = 840  # lower right column (x coordinate) of panel area
lry = 670  # lower right row (y coordinate) of panel area
cv2.rectangle(markedImg, (ulx, uly), (lrx, lry), (0, 255, 0), 3)

# Our panel calibration by band (from MicaSense for our specific panel)