def detect_panels(self): from micasense.panel import Panel if self.panels is not None and self.detected_panel_count == len(self.images): return self.detected_panel_count self.panels = [Panel(img,panelCorners=pc) for img,pc in zip(self.images,self.panelCorners)] self.detected_panel_count = 0 for p in self.panels: if p.panel_detected(): self.detected_panel_count += 1 # is panelCorners are defined by hand if self.panelCorners is not None: self.detected_panel_count = len(self.panelCorners) return self.detected_panel_count
def detect_panels(self): """Detect reflectance panels in the Capture, and return a count.""" from micasense.panel import Panel if self.panels is not None and self.detected_panel_count == len(self.images): return self.detected_panel_count self.panels = [Panel(img, panelCorners=pc) for img, pc in zip(self.images, self.panel_corners)] self.detected_panel_count = 0 for p in self.panels: if p.panel_detected(): self.detected_panel_count += 1 # if panel_corners are defined by hand if self.panel_corners is not None and all(corner is not None for corner in self.panel_corners): self.detected_panel_count = len(self.panel_corners) return self.detected_panel_count
) print( "The execption text below may help to find the source of the problem:") print() print(e) # ### Testing image reading and panel detection # # The above code checks for the proper libraries to be installed and verifies it can execute `exiftool`. This code opens an example image, reads the metadata, and then uses the `pyzbar` library to find a MicaSense panel in the image. # In[8]: from micasense.image import Image imagePath = os.path.join('.', 'Imagery', 'band1') imageName = glob.glob(os.path.join(imagePath, 'IMG_0005_1.tif'))[0] img = Image(imageName) img.plot_raw(figsize=(8.73, 8.73)) from micasense.panel import Panel panel = Panel(img) if not panel.panel_detected(): raise IOError("Panel Not Detected! Check your installation of pyzbar") else: panel.plot(figsize=(8, 8)) print('Success! Now you are ready for Part 1 of the tutorial.') # --- # Copyright (c) 2017-2018 MicaSense, Inc. For licensing information see the [project git repository](https://github.com/micasense/imageprocessing)
# # Panels # This notebook shows usage for the Panel class. This type is useful for detecting MicaSense calibration panels and extracting information about the lambertian panel surface. # In[ ]: import os, glob from micasense.image import Image from micasense.panel import Panel get_ipython().run_line_magic('matplotlib', 'inline') imagePath = os.path.join('.', 'data', '0000SET', '000') imageName = glob.glob(os.path.join(imagePath, 'IMG_0000_1.tif'))[0] img = Image(imageName) panel = Panel(img) if not panel.panel_detected(): raise IOError("Panel Not Detected!") print("Detected panel serial: {}".format(panel.serial)) mean, std, num, sat_count = panel.raw() print("Extracted Panel Statistics:") print("Mean: {}".format(mean)) print("Standard Deviation: {}".format(std)) print("Panel Pixel Count: {}".format(num)) print("Saturated Pixel Count: {}".format(sat_count)) panel.plot() # ---
def run(): import sys from micasense.capture import Capture import cv2 import numpy as np import matplotlib.pyplot as plt import micasense.imageutils as imageutils import micasense.plotutils as plotutils import argparse import os, glob from multiprocessing import Process, freeze_support import imutils import statistics import matplotlib.pyplot as plt from micasense.image import Image from micasense.panel import Panel import micasense.utils as msutils import csv import pickle freeze_support() ap = argparse.ArgumentParser() ap.add_argument( "-l", "--log_file_path", required=False, help= "file path to write log to. useful for using from the web interface") ap.add_argument( "-a", "--image_path", required=False, help= "image path to directory with all images inside of it. useful for using from command line. e.g. /home/nmorales/MicasenseTest/000. NOTE: a temp folder will be created within this directory" ) ap.add_argument( "-b", "--file_with_image_paths", required=False, help= "file path to file that has all image file names and temporary file names for each image in it, comma separated and separated by a newline. useful for using from the web interface. e.g. /home/nmorales/myfilewithnames.txt" ) ap.add_argument( "-c", "--panel_image_path", required=False, help= "image path to directory with all 5 panel images inside of it. useful for using from command line. e.g. /home/nmorales/MicasenseTest/000" ) ap.add_argument( "-d", "--file_with_panel_image_paths", required=False, help= "file path to file that has all image file names in it, separated by a newline. useful for using from the web interface. e.g. /home/nmorales/myfilewithnames.txt" ) ap.add_argument( "-o", "--output_path", required=True, help= "output path to directory in which all resulting files will be placed. useful for using from the command line" ) ap.add_argument("-y", "--final_rgb_output_path", required=True, help="output file path for stitched RGB image") ap.add_argument("-z", "--final_rnre_output_path", required=True, help="output file path for stitched RNRe image") ap.add_argument( "-p", "--output_path_band1", required=True, help= "output file path in which resulting band 1 will be placed. useful for using from the web interface" ) ap.add_argument( "-q", "--output_path_band2", required=True, help= "output file path in which resulting band 2 will be placed. useful for using from the web interface" ) ap.add_argument( "-r", "--output_path_band3", required=True, help= "output file path in which resulting band 3 will be placed. useful for using from the web interface" ) ap.add_argument( "-s", "--output_path_band4", required=True, help= "output file path in which resulting band 4 will be placed. useful for using from the web interface" ) ap.add_argument( "-u", "--output_path_band5", required=True, help= "output file path in which resulting band 5 will be placed. useful for using from the web interface" ) ap.add_argument( "-n", "--number_captures", required=False, help="When you want to test using only a subset of images.") ap.add_argument( "-k", "--thin_images", required=False, help= "When you have too many images, specify a number of images to skip. e.g. 1 will only use every other image, 2 will use every third image, 3 will use every fourth image." ) ap.add_argument( "-w", "--work_megapix", required=False, help="Resolution for image registration step. The default is 0.6 Mpx") ap.add_argument( "-x", "--ba_refine_mask", required=False, default='xxxxx', help= "Set refinement mask for bundle adjustment. It looks like 'x_xxx' where 'x' means refine respective parameter and '_' means don't refine one, and has the following format: <fx><skew><ppx><aspect><ppy>. The default mask is 'xxxxx'. If bundle adjustment doesn't support estimation of selected parameter then the respective flag is ignored." ) args = vars(ap.parse_args()) log_file_path = args["log_file_path"] image_path = args["image_path"] file_with_image_paths = args["file_with_image_paths"] panel_image_path = args["panel_image_path"] file_with_panel_image_paths = args["file_with_panel_image_paths"] output_path = args["output_path"] final_rgb_output_path = args["final_rgb_output_path"] final_rnre_output_path = args["final_rnre_output_path"] output_path_band1 = args["output_path_band1"] output_path_band2 = args["output_path_band2"] output_path_band3 = args["output_path_band3"] output_path_band4 = args["output_path_band4"] output_path_band5 = args["output_path_band5"] thin_images = args["thin_images"] if thin_images is not None: thin_images = int(thin_images) number_captures = args["number_captures"] if number_captures is not None: number_captures = int(number_captures) work_megapix = args["work_megapix"] ba_refine_mask = args["ba_refine_mask"] if sys.version_info[0] < 3: raise Exception("Must use Python3. Use python3 in your command line.") if log_file_path is not None: sys.stderr = open(log_file_path, 'a') def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) #Must supply either image_path or file_with_image_paths as a source of images imageNamesAll = [] imageTempNames = [] tempImagePath = None if image_path is not None: tempImagePath = os.path.join(image_path, 'temp') if not os.path.exists(tempImagePath): os.makedirs(tempImagePath) imageNamesAll = glob.glob(os.path.join(image_path, '*.tif')) for idx, val in enumerate(imageNamesAll): imageTempNames.append( os.path.join(tempImagePath, 'temp' + str(idx) + '.tif')) elif file_with_image_paths is not None: with open(file_with_image_paths) as fp: for line in fp: imageName, tempImageName = line.strip().split(",") imageNamesAll.append(imageName) imageTempNames.append(tempImageName) else: if log_file_path is not None: eprint( "No input images given. use image_path OR file_with_image_paths args" ) else: print( "No input images given. use image_path OR file_with_image_paths args" ) os._exit panelBandCorrection = {} panelNames = [] if panel_image_path is not None: panelNames = glob.glob(os.path.join(panel_image_path, '*.tif')) elif file_with_panel_image_paths is not None: with open(file_with_panel_image_paths) as fp: for line in fp: imageName = line.strip() panelNames.append(imageName) else: if log_file_path is not None: eprint( "No panel input images given. use panel_image_path OR file_with_panel_image_paths args" ) else: print( "No panel input images given. use panel_image_path OR file_with_panel_image_paths args" ) #os._exit for imageName in panelNames: img = Image(imageName) band_name = img.band_name if img.auto_calibration_image: if log_file_path is not None: eprint("Found automatic calibration image") else: print("Found automatic calibration image") panel = Panel(img) if not panel.panel_detected(): raise IOError("Panel Not Detected!") mean, std, num, sat_count = panel.raw() micasense_panel_calibration = panel.reflectance_from_panel_serial() radianceToReflectance = micasense_panel_calibration / mean panelBandCorrection[band_name] = radianceToReflectance if log_file_path is not None: eprint("Detected panel serial: {}".format(panel.serial)) eprint("Extracted Panel Statistics:") eprint("Mean: {}".format(mean)) eprint("Standard Deviation: {}".format(std)) eprint("Panel Pixel Count: {}".format(num)) eprint("Saturated Pixel Count: {}".format(sat_count)) eprint('Panel Calibration: {:1.3f}'.format( micasense_panel_calibration)) eprint('Radiance to reflectance conversion factor: {:1.3f}'.format( radianceToReflectance)) else: print("Detected panel serial: {}".format(panel.serial)) print("Extracted Panel Statistics:") print("Mean: {}".format(mean)) print("Standard Deviation: {}".format(std)) print("Panel Pixel Count: {}".format(num)) print("Saturated Pixel Count: {}".format(sat_count)) print('Panel Calibration: {:1.3f}'.format( micasense_panel_calibration)) print('Radiance to reflectance conversion factor: {:1.3f}'.format( radianceToReflectance)) imageNamesDict = {} for i in imageNamesAll: s = i.split("_") k = s[-1].split(".") if s[-2] not in imageNamesDict: imageNamesDict[s[-2]] = {} imageNamesDict[s[-2]][k[0]] = i imageNameCaptures = [] capture_count = 0 skip_count = 0 image_count = 0 skip_proceed = 1 num_captures_proceed = 1 for i in sorted(imageNamesDict.keys()): im = [] if thin_images is not None: if image_count > 0 and skip_count < thin_images: skip_count = skip_count + 1 skip_proceed = 0 else: skip_count = 0 skip_proceed = 1 image_count = image_count + 1 if skip_proceed == 1: if number_captures is not None: if capture_count < number_captures: num_captures_proceed = 1 else: num_captures_proceed = 0 if num_captures_proceed == 1: for j in sorted(imageNamesDict[i].keys()): imageName = imageNamesDict[i][j] img = Image(imageName) # meta = img.meta # flightImageRaw=plt.imread(imageName) # flightRadianceImage, _, _, _ = msutils.raw_image_to_radiance(meta, flightImageRaw) # flightReflectanceImage = flightRadianceImage * panelBandCorrection[img.band_name] # flightUndistortedReflectance = msutils.correct_lens_distortion(meta, flightReflectanceImage) # calibratedImage = imageNameToCalibratedImageName[imageName] # print(flightUndistortedReflectance.shape) # plt.imsave(calibratedImage, flightUndistortedReflectance, cmap='gray') # calIm = Image(calibratedImage, meta = meta) im.append(img) if len(im) > 0: imageNameCaptures.append(im) capture_count = capture_count + 1 def enhance_image(rgb): gaussian_rgb = cv2.GaussianBlur(rgb, (9, 9), 10.0) gaussian_rgb[gaussian_rgb < 0] = 0 gaussian_rgb[gaussian_rgb > 1] = 1 unsharp_rgb = cv2.addWeighted(rgb, 1.5, gaussian_rgb, -0.5, 0) unsharp_rgb[unsharp_rgb < 0] = 0 unsharp_rgb[unsharp_rgb > 1] = 1 # Apply a gamma correction to make the render appear closer to what our eyes would see gamma = 1.4 gamma_corr_rgb = unsharp_rgb**(1.0 / gamma) return (gamma_corr_rgb) captures = [] # captureGPSDict = {} # counter = 0 for i in imageNameCaptures: im = Capture(i) captures.append(im) # latitudes = [] # longitudes = [] # altitudes = [] # for i,img in enumerate(im.images): # latitudes.append(img.latitude) # longitudes.append(img.longitude) # altitudes.append(img.altitude) # captureGPSDict[counter] = [round(statistics.mean(latitudes), 4), round(statistics.mean(longitudes), 4), statistics.mean(altitudes)] # counter = counter + 1 # GPSsorter = {} # for counter, loc in captureGPSDict.items(): # if loc[0] not in GPSsorter: # GPSsorter[loc[0]] = {} # GPSsorter[loc[0]][loc[1]] = counter imageCaptureSets = captures img_type = "reflectance" match_index = 0 # Index of the band max_alignment_iterations = 1000 warp_mode = cv2.MOTION_HOMOGRAPHY # MOTION_HOMOGRAPHY or MOTION_AFFINE. For Altum images only use HOMOGRAPHY pyramid_levels = None # for images with RigRelatives, setting this to 0 or 1 may improve alignment if log_file_path is not None: eprint(img_type) eprint( "Alinging images. Depending on settings this can take from a few seconds to many minutes" ) else: print(img_type) print( "Alinging images. Depending on settings this can take from a few seconds to many minutes" ) warp_matrices = None if tempImagePath is not None: if os.path.exists(os.path.join(tempImagePath, 'capturealignment.pkl')): with open(os.path.join(tempImagePath, 'capturealignment.pkl'), 'rb') as f: warp_matrices, alignment_pairs = pickle.load(f) if warp_matrices is None: warp_matrices, alignment_pairs = imageutils.align_capture( captures[0], ref_index=match_index, max_iterations=max_alignment_iterations, warp_mode=warp_mode, pyramid_levels=pyramid_levels, multithreaded=True) if log_file_path is not None: eprint("Finished Aligning, warp matrices={}".format(warp_matrices)) else: print("Finished Aligning, warp matrices={}".format(warp_matrices)) if tempImagePath is not None: with open(os.path.join(tempImagePath, 'capturealignment.pkl'), 'wb') as f: pickle.dump([warp_matrices, alignment_pairs], f) images_to_stitch1 = [] images_to_stitch2 = [] count = 0 for x in imageCaptureSets: cropped_dimensions, edges = imageutils.find_crop_bounds( x, warp_matrices, warp_mode=warp_mode) im_aligned = imageutils.aligned_capture(x, warp_matrices, warp_mode, cropped_dimensions, match_index, img_type=img_type) if log_file_path is not None: eprint(im_aligned.shape) else: print(im_aligned.shape) i1 = im_aligned[:, :, [0, 1, 2]] i1 = enhance_image(i1) image1 = np.uint8(i1 * 255) cv2.imwrite(imageTempNames[count], image1) images_to_stitch1.append(imageTempNames[count]) count = count + 1 i2 = im_aligned[:, :, [2, 3, 4]] i2 = enhance_image(i2) image2 = np.uint8(i2 * 255) cv2.imwrite(imageTempNames[count], image2) images_to_stitch2.append(imageTempNames[count]) count = count + 1 del cropped_dimensions del edges del im_aligned del i1 del i2 del image1 del image2 sep = " " images_string1 = sep.join(images_to_stitch1) images_string2 = sep.join(images_to_stitch2) num_images = len(images_to_stitch1) del imageNamesAll del imageTempNames del imageNamesDict del panelNames del imageNameCaptures del imageCaptureSets del images_to_stitch1 del images_to_stitch2 log_file_path_string = '' if log_file_path is not None: log_file_path_string = " --log_file '" + log_file_path + "'" stitchCmd = "stitching_multi " + images_string1 + " " + images_string2 + " --num_images " + str( num_images ) + " --result1 '" + final_rgb_output_path + "' --result2 '" + final_rnre_output_path + "' " + log_file_path_string # stitchCmd = "stitching_multi "+images_string1+" "+images_string2+" --num_images "+str(num_images)+" --result1 '"+final_rgb_output_path+"' --result2 '"+final_rnre_output_path+"' --log_file "+log_file_path+" --work_megapix "+work_megapix+" --ba_refine_mask "+ba_refine_mask # stitchCmd = "stitching_multi "+images_string1+" "+images_string2+" --num_images "+str(len(images_to_stitch1))+" --result1 '"+final_rgb_output_path+"' --result2 '"+final_rnre_output_path+"' --try_cuda yes --log_file "+log_file_path+" --work_megapix "+work_megapix if log_file_path is not None: eprint(stitchCmd) eprint(len(stitchCmd)) else: print(stitchCmd) print(len(stitchCmd)) os.system(stitchCmd) final_result_img1 = cv2.imread(final_rgb_output_path, cv2.IMREAD_UNCHANGED) final_result_img2 = cv2.imread(final_rnre_output_path, cv2.IMREAD_UNCHANGED) final_result_img1 = enhance_image(final_result_img1 / 255) final_result_img2 = enhance_image(final_result_img2 / 255) plt.imsave(final_rgb_output_path, final_result_img1) plt.imsave(final_rnre_output_path, final_result_img2) plt.imsave(output_path_band1, final_result_img1[:, :, 0], cmap='gray') plt.imsave(output_path_band2, final_result_img1[:, :, 1], cmap='gray') plt.imsave(output_path_band3, final_result_img1[:, :, 2], cmap='gray') plt.imsave(output_path_band4, final_result_img2[:, :, 1], cmap='gray') plt.imsave(output_path_band5, final_result_img2[:, :, 2], cmap='gray')
def corners(self): self.cap.detect_panels() panel_corners = [Panel.panel_corners(p) for p in self.cap.panels] self.panel_corners = panel_corners self.cap.panelCorners = panel_corners return panel_corners