Exemplo n.º 1
0
def dump_bin(target, arguments):
    """

    :param target:
    :type target:
    :param arguments:
    :type arguments:
    """

    print_info("Parsing input file...")

    cmd = "od -Ax -tx1 -v '%s'" % arguments['input_bin_file']
    text_string = run_cmd_output(cmd)
    bintext = []
    for line in text_string.split('\n'):
        if line == "":
            continue
        bintext.append("".join(line.split(' ')[1:]))

    instrs = interpret_bin("".join(bintext), target, safe=arguments['safe'])

    for instr in instrs:
        print(instruction_from_definition(instr).assembly())
Exemplo n.º 2
0
def generate(test_definition, output_file, target, **kwargs):
    """
    Microbenchmark generation policy.

    :param test_definition: Test definition object
    :type test_definition: :class:`MicroprobeTestDefinition`
    :param output_file: Output file name
    :type output_file: :class:`str`
    :param target: Target definition object
    :type target: :class:`Target`
    """
    end_address_orig = None
    overhead = 0

    if len(test_definition.dat_mappings) > 0:
        #
        # Assuming MPT generated from MAMBO full system
        #
        dat = target.get_dat(dat_map=test_definition.dat_mappings)
        dat.control['DAT'] = True

        for instr in test_definition.code:
            instr.address = dat.translate(instr.address, rev=True)

        # Address order might have changed after mapping
        test_definition.set_instruction_definitions(
            sorted(test_definition.code, key=lambda x: x.address)
        )

        # remove not translated addresses (needed?)
        # variables = [var for var in test_definition.variables
        #             if var.address != dat.translate(var.address, rev=True)]
        # test_definition.set_variables_definition(variables)

        for var in test_definition.variables:
            var.address = dat.translate(var.address, rev=True)

        # Address order might have changed after mapping
        test_definition.set_variables_definition(
            sorted(test_definition.variables, key=lambda x: x.address)
        )

        if test_definition.default_code_address != 0:
            test_definition.default_code_address = dat.translate(
                test_definition.default_code_address, rev=True
            )
        if test_definition.default_data_address != 0:
            test_definition.default_data_address = dat.translate(
                test_definition.default_data_address, rev=True
            )
        for access in test_definition.roi_memory_access_trace:
            access.address = dat.translate(
                access.address, rev=True
            )

    if 'raw_bin' in kwargs:
        print_info("Interpreting RAW dump...")

        sequence = []
        raw_dict = {}
        current_address = 0

        # Assume state file provides the initial code address
        displ = test_definition.default_code_address
        test_definition.set_default_code_address(0)

        for entry in test_definition.code:

            if (not entry.assembly.upper().startswith("0X") and
                    not entry.assembly.upper().startswith("0B")):
                raise MicroprobeMPTFormatError(
                    "This is not a RAW dump as it contains "
                    "assembly (%s)" % entry.assembly
                )

            if entry.label is not None:
                raise MicroprobeMPTFormatError(
                    "This is not a RAW dump as it contains "
                    "labels (%s)" % entry.label
                )

            if entry.decorators not in ['', ' ', None, []]:
                raise MicroprobeMPTFormatError(
                    "This is not a RAW dump as it contains "
                    "decorators (%s)" % entry.decorators
                )

            if entry.comments not in ['', ' ', None, []]:
                raise MicroprobeMPTFormatError(
                    "This is not a RAW dump as it contains "
                    "comments (%s)" % entry.comments
                )

            if entry.address is not None:
                current_address = entry.address + displ

            if current_address not in raw_dict:
                raw_dict[current_address] = ""

            # Assume that raw dump use a 4 bytes hex dump
            if len(entry.assembly) != 10:
                raise MicroprobeMPTFormatError(
                    "This is not a RAW 4-byte dump as it contains "
                    "lines with other formats (%s)" % entry.assembly
                )

            raw_dict[current_address] += entry.assembly[2:]

        if len(raw_dict) > 1:
            address_ant = sorted(raw_dict.keys())[0]
            len_ant = len(raw_dict[address_ant])//2

            # Assume that raw dump use a 4 bytes hex dump
            assert len_ant % 4 == 0

            for address in sorted(raw_dict.keys())[1:]:
                if address_ant + len_ant == address:
                    raw_dict[address_ant] += raw_dict[address]
                    len_ant = len(raw_dict[address_ant])//2
                    raw_dict.pop(address)
                else:
                    len_ant = len(raw_dict[address])//2
                    address_ant = address

                # Assume that raw dump use a 4 bytes hex dump
                assert len_ant % 4 == 0

        sequence = []
        for address in sorted(raw_dict.keys()):

            # Endianess will be big endian, because we are concatenating
            # full words resulting in the higher bits being encoded first

            code = interpret_bin(
                raw_dict[address], target, safe=True, little_endian=False,
                word_length=4
            )

            for instr in code:
                instr.address = address
                instr = instruction_from_definition(instr)
                address = address + instr.architecture_type.format.length
                instr = instruction_to_asm_definition(instr)
                sequence.append(instr)

        test_definition.set_instruction_definitions(sequence)

    reset_steps = []

    if 'no_wrap_test' not in kwargs:

        if test_definition.default_code_address != 0:
            print_error("Default code address should be zero")
            exit(-1)

        print_info("Wrapping function...")
        start_symbol = "START_TEST"

        init_address = test_definition.default_code_address
        for register in test_definition.registers:
            if register.name == "PC":
                init_address = register.value
            if register.name == "PSW_ADDR":
                init_address = register.value

        displacements = []
        for elem in test_definition.code:
            if elem.address is not None:
                if len(displacements) == 0:
                    displacements.append(
                        (elem.address, 4*1024, elem.address - init_address)
                    )
                else:
                    displacements.append(
                        (elem.address, elem.address - displacements[-1][0],
                         elem.address - init_address)
                    )

        # Get ranges with enough space to put init code
        # Assuming 4K space is enough
        displacements = [
            displ for displ in displacements
            if displ[1] >= 4*1024 and displ[2] <= 0
        ]

        if len(displacements) == 0:
            print_error(
                "Unable to find space for the initialization code. "
                "Check the mpt initial code address or state of PC "
                "for correctness."
            )
            exit(-1)

        displ_fixed = False
        if kwargs['fix_start_address']:
            displacement = kwargs['fix_start_address']
            print_info("Start point set to 0x%X" % displacement)
            displ_fixed = True
        elif 'fix_long_jump' in kwargs:
            displacement = sorted(displacements, key=lambda x: x[0])[0][0]
            if displacement > 2**32:
                displacement = 0x1000000
                print_info("Start point set to 0x%X" % displacement)
                displ_fixed = True
        else:
            displacement = sorted(displacements, key=lambda x: x[2])[-1][0]

        start_symbol = None
        init_found = False
        for instr in test_definition.code:
            if instr.address == init_address:
                if instr.label is None:
                    instr.label = "START_TEST"
                start_symbol = instr.label
                init_found = True
                break

        if not init_found:
            print_error(
                "Initial instruction address (%s) not found" %
                hex(init_address)
            )
            exit(-1)

        if start_symbol is None:
            if test_definition.code[0].label is None:
                test_definition.code[0].label = "START_TEST"
            start_symbol = test_definition.code[0].label

        if displacement is None:
            displacement = 0

        instructions = []
        reset_steps = []
        if 'wrap_endless' in kwargs and 'reset' in kwargs:

            target.scratch_var.set_address(
                Address(
                    base_address=target.scratch_var.name
                )
            )

            new_ins, overhead, reset_steps = _compute_reset_code(
                target,
                test_definition,
                kwargs,
            )
            instructions += new_ins

        if 'fix_long_jump' in kwargs:
            instructions += target.function_call(
                init_address,
                long_jump=True
            )
        else:
            instructions += target.function_call(
                ("%s" % start_symbol).replace("+0x-", "-0x"),
            )

        if 'wrap_endless' not in kwargs:
            instructions += [target.nop()]
        else:
            instructions += _compute_reset_jump(target, instructions)

        instructions_definitions = []
        for instruction in instructions:
            instruction.set_label(None)

            if not displ_fixed:
                displacement = (displacement -
                                instruction.architecture_type.format.length)

            current_instruction = MicroprobeAsmInstructionDefinition(
                instruction.assembly(), None, None, None, instruction.comments,
            )
            instructions_definitions.append(current_instruction)

        instruction = target.nop()
        instruction.set_label(None)

        if not displ_fixed:
            displacement = (displacement -
                            instruction.architecture_type.format.length)

        # To avoid overlaps
        if not displ_fixed:
            align = 0x100
            displacement = ((displacement // align) + 0) * align

        instructions_definitions[0].address = displacement
        assert instructions_definitions[0].address is not None

        # instr = MicroprobeAsmInstructionDefinition(
        #     instruction.assembly(), "ELF_ABI_EXIT", None, None, None)

        # end_address_orig = \
        #    (test_definition.default_code_address + displacement_end -
        #    instruction.architecture_type.format.length)

        instructions_definitions[0].label = "mpt2elf_endless"

        test_definition.register_instruction_definitions(
            instructions_definitions,
            prepend=True,
        )

        assert test_definition.code[0].address is not None

        if not displ_fixed:
            test_definition.set_default_code_address(
                test_definition.default_code_address + displacement,
            )

            for elem in test_definition.code:
                if elem.address is not None:
                    elem.address = elem.address - displacement

        else:
            test_definition.set_default_code_address(
                displacement
            )
            for elem in test_definition.code:
                if elem.address is not None:
                    elem.address = elem.address - displacement

    variables = test_definition.variables
    variables = [var for var in test_definition.variables
                 if var.address is None or var.address >= 0x00100000]

    test_definition.set_variables_definition(variables)

    print_info("Interpreting asm ...")

    sequence_orig = interpret_asm(
        test_definition.code, target,
        [var.name for var in variables] + [target.scratch_var.name],
        show_progress=True,
    )

    if len(sequence_orig) < 1:
        raise MicroprobeMPTFormatError(
            "No instructions found in the 'instructions' entry of the MPT"
            " file. Check the input file.",
        )

    raw = test_definition.raw
    raw['FILE_FOOTER'] = "# mp_mpt2elf: Wrapping overhead: %03.2f %%" \
                         % overhead

    # end_address = end_address_orig
    ckwargs = {
        # 'end_address': end_address,
        # 'reset': False,
        # 'endless': 'endless' in kwargs
    }

    wrapper_name = "AsmLd"

    if test_definition.default_data_address is not None:
        ckwargs['init_data_address'] = \
            test_definition.default_data_address

    if test_definition.default_code_address is not None:
        ckwargs['init_code_address'] = \
            test_definition.default_code_address

    try:
        code_wrapper = microprobe.code.get_wrapper(wrapper_name)
    except MicroprobeValueError as exc:
        raise MicroprobeException(
            "Wrapper '%s' not available. Check if you have the wrappers"
            " of the target installed or set up an appropriate "
            "MICROPROBEWRAPPERS environment variable. Original error "
            "was: %s" %
            (wrapper_name, str(exc)),
        )

    wrapper = code_wrapper(**ckwargs)

    print_info("Setup synthesizer ...")
    synthesizer = microprobe.code.Synthesizer(
        target, wrapper, no_scratch=False,
        extra_raw=raw,
    )

    variables = test_definition.variables
    registers = test_definition.registers
    sequence = sequence_orig

    if len(registers) >= 0:

        cr_reg = [
            register for register in registers if register.name == "CR"
        ]

        registers = [
            register for register in registers if register.name != "CR"
        ]

        if cr_reg:
            value = cr_reg[0].value
            for idx in range(0, 8):
                cr = MicroprobeTestRegisterDefinition(
                    "CR%d" % idx,
                    (value >> (28 - (idx * 4))) & 0xF,
                    )
                registers.append(cr)

        synthesizer.add_pass(
            microprobe.passes.initialization.InitializeRegistersPass(
                registers, skip_unknown=True, warn_unknown=True,
                skip_control=True, force_reserved=True
            ),
        )

    synthesizer.add_pass(
        microprobe.passes.structure.SimpleBuildingBlockPass(
            len(sequence),
        ),
    )

    synthesizer.add_pass(
        microprobe.passes.variable.DeclareVariablesPass(
            variables,
        ),
    )

    synthesizer.add_pass(
        microprobe.passes.instruction.ReproduceSequencePass(sequence),
    )

    if target.name.startswith("power"):
        fix_branches = [instr.name for instr in target.instructions.values()
                        if instr.branch_conditional]

        if 'raw_bin' in kwargs:
            # We do not know what is code and what is data, so we safely
            # disable the asm generation and keep the values
            for orig in [21, 17, 19]:
                synthesizer.add_pass(
                    microprobe.passes.instruction.DisableAsmByOpcodePass(
                        fix_branches, 0, ifval=orig
                    )
                )
        else:
            # We know what is code and what is data, so we can safely
            # fix the branch instructions
            for new, orig in [(20, 21), (16, 17), (18, 19)]:
                synthesizer.add_pass(
                    SetInstructionOperandsByOpcodePass(
                        fix_branches, 0, new, force=True, ifval=orig
                    )
                )

    if kwargs.get("fix_memory_registers", False):
        kwargs["fix_memory_references"] = True

    if kwargs.get("fix_memory_references", False):
        print_info("Fix memory references: On")

        synthesizer.add_pass(
            microprobe.passes.memory.FixMemoryReferencesPass(
                reset_registers=kwargs.get("fix_memory_registers", False),
            ),
        )

        synthesizer.add_pass(
            microprobe.passes.register.FixRegistersPass(
                forbid_writes=['GPR3'],
            ),
        )

    if kwargs.get("fix_memory_registers", False):
        print_info("Fix memory registers: On")
        synthesizer.add_pass(
            microprobe.passes.register.NoHazardsAllocationPass(),
        )

    if kwargs.get("fix_branch_next", False):
        print_info("Force branch to next: On")
        synthesizer.add_pass(
            microprobe.passes.address.UpdateInstructionAddressesPass(
                force="fix_flatten_code" in kwargs,
                noinit=True
            )
        )
        synthesizer.add_pass(
            microprobe.passes.branch.BranchNextPass(force=True),
        )

    if kwargs.get("fix_indirect_branches", False):
        print_info("Fix indirect branches: On")
        synthesizer.add_pass(
            microprobe.passes.address.UpdateInstructionAddressesPass(
                noinit=True
            ),
        )
        synthesizer.add_pass(
            microprobe.passes.branch.FixIndirectBranchPass(),
        )

    if displ_fixed:
        synthesizer.add_pass(
            microprobe.passes.address.SetInitAddressPass(displacement)
        )

    synthesizer.add_pass(
        microprobe.passes.address.UpdateInstructionAddressesPass(
            noinit=True,
            init_from_first=not displ_fixed,
        ),
    )

    synthesizer.add_pass(
        microprobe.passes.variable.UpdateVariableAddressesPass(
        ),
    )

    synthesizer.add_pass(
        microprobe.passes.symbol.ResolveSymbolicReferencesPass(
            onlyraw=True
        ),
    )

    print_info("Start synthesizer ...")
    bench = synthesizer.synthesize()

    # Save the microbenchmark
    synthesizer.save(output_file, bench=bench)

    print_info("'%s' generated!" % output_file)

    _compile(output_file, target, **kwargs)

    return
Exemplo n.º 3
0
def _compute_reset_code(target, test_def, args):
    instructions = interpret_asm(
        test_def.code, target, [var.name for var in test_def.variables],
        show_progress=True,
    )

    # TODO: This can be done in parallel or look for speed up the process
    instructions = [
        instruction_from_definition(instr) for instr in instructions
    ]

    instruction_dict = {}
    address = test_def.default_code_address
    progress = Progress(
        len(test_def.roi_memory_access_trace),
        msg="Building instruction dictionary",
    )
    for instr in instructions:
        progress()
        if instr.address is not None:
            if instr.address.base_address == "code":
                address = test_def.default_code_address + \
                          instr.address.displacement
                instr.set_address(address)
        else:
            address = address + instr.architecture_type.format.length
            instr.set_address(address)
        instruction_dict[instr.address] = instr

    free_regs = []
    written_after_read_regs = []
    read_regs = []
    level = 0
    dynamic_count = 0
    progress = Progress(
        len(test_def.roi_memory_access_trace),
        msg="Evaluating register usage",
    )
    reset_regs = set()
    for access in test_def.roi_memory_access_trace:
        progress()

        if access.data_type == "D":
            continue

        dynamic_count += 1
        try:
            instr = instruction_dict[access.address]
            uses = instruction_dict[access.address].uses()
            sets = instruction_dict[access.address].sets()

        except KeyError:
            print_error(
                "Access to from instruction at address "
                "0x%016X registered but such instruction is not"
                " present in the definition." % access.address,
            )
            exit(1)

        # Calls
        if instr.mnemonic == "BL":
            level += 1
        elif instr.mnemonic == "BCL":
            level += 1
        elif instr.mnemonic == "BCCTRL":
            if instr.operands()[2].value in [0, 3]:
                level += 1

        # Returns
        if instr.mnemonic == "BCLR":
            if (((instr.operands()[0].value & 0b10100) == 20) and
                    (instr.operands()[2].value == 0)):
                level -= 1

        # TODO: this should include Z and RISCV instructions for call
        # and return, but currently we do not have memory access traces
        # for such platforms

        for reg in uses:
            if reg not in read_regs:
                read_regs.append(reg)

        for reg in sets:
            if reg in free_regs:
                continue
            elif reg not in read_regs:
                free_regs.append(reg)
            elif reg not in written_after_read_regs:
                written_after_read_regs.append(reg)

        reset_regs = set(read_regs).intersection(
            set(written_after_read_regs),
        )

    reset_regs = sorted(reset_regs)

    assert len(free_regs) == len(set(free_regs))
    assert len(set(free_regs).intersection(set(reset_regs))) == 0

    if len(test_def.roi_memory_access_trace) == 0:
        # We do not have memory access trace, assume calling conventions
        reset_regs = target.volatile_registers

    reset_regs = [
        reg for reg in reset_regs if reg in target.volatile_registers]

    if len(reset_regs) == 0 and len(test_def.roi_memory_access_trace) == 0:
        print_info(
            "No memory access trace found. Resetting volatile registers."
        )
        reset_regs = target.volatile_registers

    unused_regs = sorted(
        (reg for reg in target.registers.values() if reg not in read_regs),
    )

    #
    # Make sure scratch registers are reset last
    #
    for reg in target.scratch_registers:
        if reg in reset_regs:
            reset_regs.remove(reg)
            reset_regs.append(reg)

    free_regs = unused_regs + free_regs

    # Know which ones are not used (or written) and which ones are used
    # Use them as base / temporal registers for addresses

    # Check addresses
    conflict_addresses = {}
    new_ins = []
    progress = Progress(
        len(test_def.roi_memory_access_trace),
        msg="Evaluating memory usage",
    )
    for access in test_def.roi_memory_access_trace:
        progress()
        if access.data_type == "I":
            continue
        val = conflict_addresses.get(
            access.address,
            [access.length, access.access_type],
        )
        if access.access_type not in val[1]:
            val[1] += access.access_type
        val[0] = max(val[0], access.length)
        conflict_addresses[access.address] = val

    fix_addresses = []
    for address in conflict_addresses:
        value = conflict_addresses[address]
        if value[1] == "RW":
            wvalue = None
            for var in test_def.variables:
                if var.var_type.upper() in ["CHAR", "UINT8_T"]:
                    elem_size = 1
                else:
                    raise NotImplementedError
                end_address = var.address + var.num_elements * elem_size
                if var.address <= address <= end_address:
                    offset = int((address - var.address) / elem_size)
                    svalue = var.init_value[
                        offset:offset + int(value[0] / elem_size)
                    ]
                    svalue = "".join(["%02X" % tval for tval in svalue])
                    wvalue = int(svalue, 16)
                    break

            if wvalue is None:
                print_error(
                    "Unable to restore original value for address 0x%X" %
                    address,
                )
                exit(1)

            if value[0] <= 8:
                fix_addresses.append((address, value[0], wvalue))
            else:
                for selem in range(0, value[0]//8):
                    sfmt = "%%0%dX" % (2*value[0])
                    nvalue = sfmt % wvalue
                    nvalue = int(nvalue[selem*16:(selem+1)*16], 16)
                    fix_addresses.append(
                        (address + selem * 8,
                         8,
                         nvalue)
                    )

    reset_steps = []

    context = Context()
    context.set_symbolic(True)

    if len(fix_addresses) > 0:

        # TODO: This can be optimized. Reduce the number of instructions to
        # be added by sorting the reset code (shared values or similar
        # addresses)
        # TODO: This can be optimized for use vector registers when
        # needed
        #
        print_info("Adding instructions to reset memory state")
        reset_register = [
            reg
            for reg in free_regs
            if reg.type.used_for_address_arithmetic and
            reg.name != "GPR0"
        ][0]

        for address, length, value in fix_addresses:

            address_obj = Address(base_address="data", displacement=address)
            new_instructions = target.set_register(
                reset_register, value, context, opt=False,
            )

            for ins in new_instructions:
                ins.add_comment(
                    "Reset code. Setting %s to 0X%016X" %
                    (reset_register.name, value),
                )

            reset_steps.append([new_instructions[:], reset_register, value])
            context.set_register_value(reset_register, value)

            try:
                store_ins = target.store_integer(
                    reset_register, address_obj, length * 8, context,
                )
                new_instructions += store_ins
                reset_steps.append(
                    [store_ins, reset_register, address_obj, length],
                )

            except MicroprobeCodeGenerationError:
                areg = [
                    reg for reg in free_regs
                    if reg.type.used_for_address_arithmetic and reg.name !=
                    "GPR0"
                ][1]

                set_ins = target.set_register(
                    areg, address, context, opt=False,
                )
                new_instructions += set_ins
                reset_steps.append([set_ins, areg, address_obj])

                context.set_register_value(areg, address_obj)

                store_ins = target.store_integer(
                    reset_register, address_obj, length * 8, context,
                )
                new_instructions += store_ins
                reset_steps.append(
                    [store_ins, reset_register, address_obj, length],
                )

                for ins in set_ins:
                    ins.add_comment(
                        "Reset code. Setting %s to 0X%016X" %
                        (areg.name, address),
                    )

            for ins in store_ins:
                ins.add_comment(
                    "Reset code. Setting mem content in 0X%016X" % (address),
                    )

            new_ins.extend(new_instructions)

    # Reset contents of used registers
    for reset_register in reset_regs:
        try:
            value = [
                reg for reg in test_def.registers if reg.name ==
                reset_register.name
            ][0].value
        except IndexError:
            continue

        new_instructions = target.set_register(
            reset_register, value, context, opt=False,
        )
        reset_steps.append([new_instructions, reset_register, value])
        context.set_register_value(reset_register, value)

        for ins in new_instructions:
            ins.add_comment(
                "Reset code. Setting %s to 0X%016X" %
                (reset_register.name, value),
            )

        new_ins.extend(new_instructions)

    try:
        overhead = (((len(new_ins) * 1.0) / dynamic_count) * 100)
    except ZeroDivisionError:
        print_warning("Unable to compute overhead. Zero dynamic instruction "
                      "count")
        overhead = 0

    print_info(
        "%03.2f%% overhead added by resetting code" % overhead,
    )
    if overhead > args['wrap_endless_threshold']:
        print_error(
            "Instructions added: %d" % len(new_ins),
        )
        print_error(
            "Total instructions: %d" % dynamic_count,
        )
        print_error(
            "Reset code above --wrap-endless-threshold. Stopping generation.",
        )
        exit(1)

    return new_ins, overhead, reset_steps
Exemplo n.º 4
0
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import print_function
import sys
from microprobe.target import import_definition
from microprobe.utils.bin import interpret_bin
from microprobe.code.ins import instruction_from_definition
from microprobe.utils.asm import interpret_asm

target = import_definition(sys.argv[1])
print(sys.argv[2:])

for elem in sys.argv[2:]:
    instr_def = interpret_bin(elem, target)[0]
    instr = instruction_from_definition(instr_def)
    codification = int(instr.binary(), 2)
    assembly = instr.assembly()
    instr_def2 = interpret_asm(assembly, target, [])[0]
    print(hex(codification))
    instr_def3 = interpret_bin(hex(codification)[2:], target)[0]
    instr2 = instruction_from_definition(instr_def2)
    instr3 = instruction_from_definition(instr_def3)
    assert instr.assembly() == instr2.assembly()
    assert instr2.assembly() == instr3.assembly()
    assert instr.binary() == instr2.binary()
    assert instr2.binary() == instr3.binary()
    print(instr3.assembly())
Exemplo n.º 5
0
def dump_objdump(target, arguments):
    """

    :param target:
    :type target:
    :param arguments:
    :type arguments:
    """

    cmd = "'%s' -Ax -tx1 -v '%s'" % (arguments['od_bin'],
                                     arguments['input_bin_file'])
    text_string = run_cmd_output(cmd)
    bintext = []
    for line in text_string.split('\n'):
        if line == "":
            continue
        bintext.append("".join(line.split(' ')[1:]))

    instrs = interpret_bin("".join(bintext), target)

    print("")
    print("%s:\tfile format raw %s" %
          (os.path.basename(arguments['input_bin_file']), target.isa.name))
    print("")
    print("")
    print("Disassembly of section .raw:")
    print("")

    maxlen = max(len(instr.asm[2:]) for instr in instrs)
    if maxlen % 2 != 0:
        maxlen = maxlen + 1
    maxlen += maxlen // 2

    counter = arguments['start_address']

    label_dict = RejectingOrderedDict()
    instr_dict = RejectingOrderedDict()

    for instr_def in instrs:
        instr = instruction_from_definition(instr_def, fix_relative=False)
        asm = instr.assembly().lower()

        relative = None
        absolute = None
        if instr.branch:

            for memoperand in instr.memory_operands():

                if not memoperand.descriptor.is_branch_target:
                    continue

                for operand in memoperand.operands:

                    if operand.type.address_relative:
                        relative = operand.value

                    if operand.type.address_absolute:
                        absolute = operand.value

        masm = instr_def.asm[2:]
        if len(masm) % 2 != 0:
            masm = "0" + masm

        binary = " ".join([str(masm)[i:i + 2] for i in range(0, len(masm), 2)])

        label = None
        if counter == 0:
            label = ".raw"
            label_dict[counter] = label
        elif counter in label_dict:
            label = label_dict[counter]

        rtarget = None
        atarget = None
        if relative is not None or absolute is not None:

            if relative is not None:
                assert absolute is None

                if isinstance(relative, six.integer_types):
                    target_addr = counter + relative
                    rtarget = relative
                elif isinstance(relative, Address):
                    target_addr = counter + relative.displacement
                    rtarget = relative.displacement
                else:
                    raise NotImplementedError

            if absolute is not None:
                assert relative is None

                if isinstance(absolute, six.integer_types):
                    target_addr = absolute
                    atarget = absolute
                elif isinstance(absolute, Address):
                    target_addr = absolute.displacement
                    atarget = absolute.displacement
                else:
                    raise NotImplementedError

            if target_addr not in label_dict:
                label_dict[target_addr] = "branch_%x" % target_addr

            if target_addr in instr_dict:
                instr_dict[target_addr][2] = label_dict[target_addr]

        instr_dict[counter] = [binary, asm, label, rtarget, atarget]
        counter = counter + len(masm) // 2

    str_format = "%8s:\t%-" + str(maxlen) + "s\t%s"
    addresses = []
    for counter, values in instr_dict.items():

        binary, asm, label, rtarget, atarget = values

        if label is not None:
            print("%016x <%s>:" % (counter, label))

        cformat = str_format
        if rtarget is not None:
            cformat = str_format + "\t <%s>" % (label_dict[counter + rtarget])
        elif atarget is not None:
            cformat = str_format + "\t <%s>" % (label_dict[atarget])

        print(cformat % (hex(counter)[2:], binary, asm))
        addresses.append(counter)

    error = False
    for key in label_dict.keys():
        if key not in addresses:
            print_warning("Target address '%s' not in the objdump" % hex(key))
            error = True

    if error and arguments['strict']:
        print_error("Check target addresses of relative branches")
        exit(-1)
Exemplo n.º 6
0
def dump_objdump(target, arguments):
    """

    :param target:
    :type target:
    :param arguments:
    :type arguments:
    """

    ifile = open(arguments['input_dma_file'], 'r')
    dataw = arguments['width_bytes']
    inputlines = ifile.readlines()
    ifile.close()

    progress = Progress(len(inputlines), msg="Lines parsed:")
    lines_dict = {}
    for idx, line in enumerate(inputlines):
        splitline = line.upper().split(" ")

        if len(splitline) != 3:
            raise MicroprobeDMAFormatError("Unable to parse line %d: %s" %
                                           (idx, line))

        if (splitline[0] != "D" or len(splitline[1]) != 16
                or len(splitline[1]) != 16):
            raise MicroprobeDMAFormatError("Unable to parse line %d: %s" %
                                           (idx, line))

        key = int(splitline[1], base=16)
        if key in lines_dict:
            print_warning("Address (%s) in line %d overwrites previous entry" %
                          (splitline[1], idx))

        lines_dict[key] = splitline[2][:-1]
        progress()

    current_key = None
    progress = Progress(len(list(lines_dict.keys())),
                        msg="Detecting segments:")
    for key in sorted(lines_dict):

        progress()

        if current_key is None:
            current_key = key
            continue

        current_address = current_key + (len(lines_dict[current_key]) // 2)

        if current_address == key:
            lines_dict[current_key] += lines_dict[key]
            lines_dict.pop(key)
        else:
            current_key = key

    instrs = []
    progress = Progress(len(list(lines_dict.keys())),
                        msg="Interpreting segments:")

    for key in sorted(lines_dict):
        progress()
        current_instrs = interpret_bin(lines_dict[key],
                                       target,
                                       safe=not arguments['strict'])
        current_instrs[0].address = Address(base_address='code',
                                            displacement=key)
        instrs += current_instrs

    maxlen = max([ins.format.length
                  for ins in target.instructions.values()] + [dataw]) * 2
    maxlen += maxlen // 2

    counter = 0
    label_dict = RejectingDict()
    instr_dict = RejectingDict()
    range_num = 1

    progress = Progress(len(instrs), msg="Computing labels:")
    for instr_def in instrs:
        progress()

        if instr_def.address is not None:
            counter = instr_def.address.displacement

        if instr_def.instruction_type is None:

            for idx in range(0, len(instr_def.asm), dataw * 2):

                label = None
                if instr_def.address is not None and idx == 0:
                    label = ".range_%x" % range_num
                    label_dict[counter] = label
                    range_num += 1
                elif counter in label_dict:
                    label = label_dict[counter]

                idx2 = min(idx + (dataw * 2), len(instr_def.asm))

                masm = instr_def.asm[idx:idx2].lower()
                binary = " ".join([
                    str(masm)[i:i + 2] for i in range(0, len(masm), 2)
                ]).lower()
                instr_dict[counter] = [binary, "0x" + masm, label, None, None]

                counter += (idx2 - idx) // 2

            continue

        instr = instruction_from_definition(instr_def, fix_relative=False)
        asm = instr.assembly().lower()

        relative = None
        absolute = None
        if instr.branch:

            for memoperand in instr.memory_operands():

                if not memoperand.descriptor.is_branch_target:
                    continue

                for operand in memoperand.operands:
                    if operand.type.address_relative:
                        relative = operand.value

                    if operand.type.address_absolute:
                        absolute = operand.value

        masm = instr_def.asm[2:]
        if len(masm) % 2 != 0:
            masm = "0" + masm

        binary = " ".join([str(masm)[i:i + 2] for i in range(0, len(masm), 2)])

        label = None
        if instr_def.address is not None:
            if counter not in label_dict:
                label = ".range_%x" % range_num
                label_dict[counter] = label
                range_num += 1
            else:
                label = label_dict[counter]
        elif counter in label_dict:
            label = label_dict[counter]

        rtarget = None
        atarget = None
        if relative is not None or absolute is not None:

            if relative is not None:
                assert absolute is None

                if isinstance(relative, int):
                    target_addr = counter + relative
                    rtarget = relative

                elif isinstance(relative, Address):
                    target_addr = counter + relative.displacement
                    rtarget = relative.displacement
                else:
                    raise NotImplementedError

            if absolute is not None:
                assert relative is None

                if isinstance(absolute, int):
                    target_addr = absolute
                    atarget = absolute
                elif isinstance(absolute, Address):
                    target_addr = absolute.displacement
                    atarget = absolute.displacement
                else:
                    raise NotImplementedError

            if target_addr not in label_dict:
                label_dict[target_addr] = "branch_%x" % target_addr

            if target_addr in instr_dict:
                instr_dict[target_addr][2] = label_dict[target_addr]

        instr_dict[counter] = [binary, asm, label, rtarget, atarget]
        counter = counter + (len(masm) // 2)

    print("")
    print("%s:\tfile format raw %s" %
          (os.path.basename(arguments['input_dma_file']), target.isa.name))
    print("")
    print("")
    print("Disassembly of section .code:")
    print("")

    str_format = "%8s:\t%-" + str(maxlen) + "s\t%s"
    for counter in sorted(instr_dict.keys()):

        binary, asm, label, rtarget, atarget = instr_dict[counter]

        if label is not None:
            print("%016x <%s>:" % (counter, label))

        cformat = str_format
        if rtarget is not None:
            cformat = str_format + "\t <%s>" % (label_dict[counter + rtarget])
        elif atarget is not None:
            cformat = str_format + "\t <%s>" % (label_dict[atarget])

        print(cformat % (hex(counter)[2:], binary, asm))
Exemplo n.º 7
0
def _compute_offset(smt_shift, target, test_def):
    """Compute required offset bettween threads to avoid conflicts."""
    addresses = []

    instructions = interpret_asm(
        test_def.code, target, [var.name for var in test_def.variables],
    )
    instructions = [
        instruction_from_definition(instr) for instr in instructions
    ]

    address = test_def.default_code_address
    for instr in instructions:
        if instr.address is not None:
            if instr.address.base_address == "code":
                address = test_def.default_code_address + \
                          instr.address.displacement
                instr.set_address(address)
        else:
            address = address + instr.architecture_type.format.length

        addresses.append(address)

    for var in test_def.variables:
        addresses.append(var.address)
        if var.var_type.upper() in ["CHAR", "UINT8_T"]:
            addresses.extend(
                range(var.address, var.address + var.num_elements),
            )
        else:
            raise NotImplementedError(
                "Unable to compute touched addresses for "
                "type '%s'" % var.var_type
            )

    if test_def.roi_memory_access_trace:
        addresses = []
        for access in test_def.roi_memory_access_trace:
            addresses.extend(
                range(access.address, access.address + access.length),
            )

    offset = ((max(addresses) / (4 * 1024)) + 1) * (4 * 1024)
    offset = int(offset)
    max_range = offset
    min_range = (min(addresses) / (4 * 1024)) * (4 * 1024)

    print_info("Computed offset needed: %d bytes" % offset)
    print_info(
        "Computed offset needed: %d megabytes" %
        (offset / (1024 * 1024)),
    )

    if smt_shift != -1:
        if offset > smt_shift:
            print_warning(
                "Offset forced to be %d bytes. There is overlapping accross "
                "threads" % smt_shift,
            )
        else:
            print_info(
                "Offset forced to be %d bytes." % smt_shift,
            )
        return smt_shift, (min_range, max_range, set(addresses))

    return offset, (min_range, max_range, set(addresses))