Exemplo n.º 1
0
    def setUp(self):
        self.oldJoe = Person(
            age=60,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=140,
            dbp=90,
            a1c=5.5,
            hdl=50,
            totChol=200,
            bmi=25,
            ldl=90,
            trig=150,
            waist=45,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=initializeAFib,
        )

        self.youngJoe = Person(
            age=40,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=140,
            dbp=90,
            a1c=5.5,
            hdl=50,
            totChol=200,
            bmi=25,
            ldl=90,
            trig=150,
            waist=45,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=initializeAFib,
        )
    def setUp(self):
        self._test_person = Person(
            age=75,
            gender=0,
            raceEthnicity=1,
            sbp=140,
            dbp=80,
            a1c=6.5,
            hdl=50,
            totChol=210,
            ldl=90,
            trig=150,
            bmi=22,
            waist=50,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=1,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=initializeAfib,
        )

        self._risk_model_repository = TestRiskModelRepository()
 def test_upper_bounds(self):
     highBPPerson = Person(
         age=75,
         gender=0,
         raceEthnicity=1,
         sbp=500,
         ldl=90,
         trig=150,
         dbp=80,
         a1c=6.5,
         hdl=50,
         totChol=210,
         bmi=22,
         waist=50,
         anyPhysicalActivity=0,
         education=Education.COLLEGEGRADUATE,
         smokingStatus=1,
         alcohol=AlcoholCategory.NONE,
         antiHypertensiveCount=0,
         statin=0,
         otherLipidLoweringMedicationCount=0,
         creatinine=0,
         initializeAfib=initializeAfib,
     )
     highBPPerson.advance_risk_factors(self._risk_model_repository)
     self.assertEqual(300, highBPPerson._sbp[-1])
Exemplo n.º 4
0
 def setUp(self):
     self.joe = Person(
         42,
         NHANESGender.MALE,
         NHANESRaceEthnicity.NON_HISPANIC_BLACK,
         140,
         90,
         5.5,
         50,
         200,
         25,
         90,
         150,
         70,
         0,
         Education.COLLEGEGRADUATE,
         SmokingStatus.NEVER,
         AlcoholCategory.NONE,
         0,
         0,
         0,
         0,
         initializeAFib,
         selfReportStrokeAge=None,
         selfReportMIAge=None,
         dfIndex=1,
         diedBy2015=0,
     )
Exemplo n.º 5
0
 def generate_starting_mean_patient(self):
     df = self.get_people_initial_state_as_dataframe()
     return Person(
         age=int(round(df.age.mean())),
         gender=NHANESGender(df.gender.mode()),
         raceEthnicity=NHANESRaceEthnicity(df.raceEthnicity.mode()),
         sbp=df.sbp.mean(),
         dbp=df.dbp.mean(),
         a1c=df.a1c.mean(),
         hdl=df.hdl.mean(),
         totChol=df.totChol.mean(),
         bmi=df.bmi.mean(),
         ldl=df.ldl.mean(),
         trig=df.trig.mean(),
         waist=df.waist.mean(),
         anyPhysicalActivity=df.anyPhysicalActivity.mode(),
         education=Education(df.education.mode()),
         smokingStatus=SmokingStatus(df.smokingStatus.mode()),
         antiHypertensiveCount=int(round(df.antiHypetensiveCount().mean())),
         statin=df.statin.mode(),
         otherLipidLoweringMedicationCount=int(
             round(df.otherLipidLoweringMedicationCount.mean())),
         initializeAfib=(lambda _: False),
         selfReportStrokeAge=None,
         selfReportMIAge=None,
         randomEffects=self._outcome_model_repository.get_random_effects(),
     )
Exemplo n.º 6
0
def build_person(x, outcome_model_repository):
    return Person(
        age=x.age,
        gender=NHANESGender(int(x.gender)),
        raceEthnicity=NHANESRaceEthnicity(int(x.raceEthnicity)),
        sbp=x.meanSBP,
        dbp=x.meanDBP,
        a1c=x.a1c,
        hdl=x.hdl,
        ldl=x.ldl,
        trig=x.trig,
        totChol=x.tot_chol,
        bmi=x.bmi,
        waist=x.waist,
        anyPhysicalActivity=x.anyPhysicalActivity,
        smokingStatus=SmokingStatus(int(x.smokingStatus)),
        alcohol=AlcoholCategory.get_category_for_consumption(x.alcoholPerWeek),
        education=Education(int(x.education)),
        antiHypertensiveCount=x.antiHypertensive,
        statin=x.statin,
        otherLipidLoweringMedicationCount=x.otherLipidLowering,
        creatinine=x.serumCreatinine,
        initializeAfib=initializeAFib,
        initializationRepository=InitializationRepository(),
        selfReportStrokeAge=x.selfReportStrokeAge,
        selfReportMIAge=np.random.randint(18, x.age)
        if x.selfReportMIAge == 99999 else x.selfReportMIAge,
        randomEffects=outcome_model_repository.get_random_effects(),
        dfIndex=x.index,
        diedBy2015=x.diedBy2015 == True,
    )
Exemplo n.º 7
0
 def getPerson(self, age=65):
     return Person(
         age=age,
         gender=0,
         raceEthnicity=1,
         sbp=140,
         dbp=80,
         a1c=6.5,
         hdl=50,
         totChol=210,
         ldl=90,
         trig=150,
         bmi=22,
         waist=50,
         anyPhysicalActivity=0,
         education=Education.COLLEGEGRADUATE,
         smokingStatus=1,
         alcohol=0,
         antiHypertensiveCount=0,
         statin=0,
         otherLipidLoweringMedicationCount=0,
         creatinine=0,
         initializeAfib=TestQALYAssignment.initializeAfib,
         initializationRepository=InitializationRepository(),
     )
Exemplo n.º 8
0
    def get_or_init_population_dataframe(cls):
        if VectorizedTestFixture._population_dataframe is None:
            test_person = Person(
                age=71,
                gender=NHANESGender.MALE,
                raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
                sbp=144.667,
                dbp=52.6667,
                a1c=9.5,
                hdl=34,
                totChol=191,
                bmi=30.05,
                ldl=110.0,
                trig=128,
                waist=45,
                anyPhysicalActivity=0,
                education=Education.COLLEGEGRADUATE,
                smokingStatus=SmokingStatus.FORMER,
                alcohol=AlcoholCategory.NONE,
                antiHypertensiveCount=0,
                statin=0,
                otherLipidLoweringMedicationCount=0,
                creatinine=0.6,
                initializeAfib=(lambda _: None),
                randomEffects={"gcp": 0},
            )
            base_gcp = GCPModel().get_risk_for_person(test_person)
            test_person._gcp.append([base_gcp])

            VectorizedTestFixture._population_dataframe = init_vectorized_population_dataframe(
                [test_person])
        return VectorizedTestFixture._population_dataframe
Exemplo n.º 9
0
def build_person(x):
    return Person(age=x.age,
                  gender=NHANESGender(int(x.gender)),
                  raceEthnicity=NHANESRaceEthnicity(int(x.raceEthnicity)),
                  sbp=x.meanSBP,
                  dbp=x.meanDBP,
                  a1c=x.a1c,
                  hdl=x.hdl,
                  ldl=x.ldl,
                  trig=x.trig,
                  totChol=x.tot_chol,
                  bmi=x.bmi,
                  waist=x.waist,
                  anyPhysicalActivity=x.anyPhysicalActivity,
                  smokingStatus=SmokingStatus(int(x.smokingStatus)),
                  alcohol=AlcoholCategory.get_category_for_consumption(
                      x.alcoholPerWeek),
                  education=Education(int(x.education)),
                  antiHypertensiveCount=x.antiHypertensive,
                  statin=x.statin,
                  otherLipidLoweringMedicationCount=x.otherLipidLowering,
                  initializeAfib=initializeAFib,
                  selfReportStrokeAge=x.selfReportStrokeAge,
                  selfReportMIAge=x.selfReportMIAge,
                  dfIndex=x.index,
                  diedBy2015=x.diedBy2015)
Exemplo n.º 10
0
 def setUp(self):
     self.joe = Person(42, NHANESGender.MALE,
                       NHANESRaceEthnicity.NON_HISPANIC_BLACK, 140, 90, 5.5,
                       50, 200, 25, 90, 150, 45, 0,
                       Education.COLLEGEGRADUATE, SmokingStatus.NEVER,
                       AlcoholCategory.NONE, 0, 0, 0, initializeAFib)
     self._always_positive_repository = AlwaysPositiveOutcomeRepository()
     self._always_negative_repository = AlwaysNegativeOutcomeRepository()
     self.cvDeterminer = CVOutcomeDetermination(
         self._always_positive_repository)
Exemplo n.º 11
0
    def setUp(self):
        self.imputed_dataset_first_person = Person(71, NHANESGender.MALE,
                                                   NHANESRaceEthnicity.NON_HISPANIC_WHITE,
                                                   144.667, 52.6667, 9.5, 34, 191, 30.05,
                                                   110.0, 128, 45, 0, Education.COLLEGEGRADUATE,
                                                   SmokingStatus.FORMER, AlcoholCategory.NONE, 0, 0, 0,
                                                   initializeAFib)

        model_spec = load_model_spec("nhanesMortalityModel")
        self.model = StatsModelCoxModel(CoxRegressionModel(**model_spec))
Exemplo n.º 12
0
 def setUp(self):
     self.baselineSBP = 140
     self.baselineDBP = 80
     self._test_person = Person(
         age=75,
         gender=0,
         raceEthnicity=1,
         sbp=self.baselineSBP,
         dbp=self.baselineDBP,
         a1c=6.5,
         hdl=50,
         totChol=210,
         ldl=90,
         trig=150,
         bmi=22,
         waist=50,
         anyPhysicalActivity=0,
         education=Education.COLLEGEGRADUATE,
         smokingStatus=1,
         alcohol=0,
         antiHypertensiveCount=0,
         statin=0,
         otherLipidLoweringMedicationCount=0,
         initializeAfib=TestTreatmentStrategy.initializeAfib)
     self._risk_model_repository = TestRiskModelRepository()
     # setup so that the SBP  always stays the same
     self._risk_model_repository._repository['sbp']._params['age'] = 0
     self._risk_model_repository._repository['sbp']._params['sbp'] = 1.0
     self._risk_model_repository._repository['sbp']._params['intercept'] = 0
     self._risk_model_repository._repository['dbp']._params['age'] = 0
     self._risk_model_repository._repository['dbp']._params['dbp'] = 1.0
     self._risk_model_repository._repository['dbp']._params['sbp'] = 0
     self._risk_model_repository._repository['dbp']._params['intercept'] = 0
     # setup so that the anti-hypertensive count stays at zero
     self._risk_model_repository._repository[
         'antiHypertensiveCount']._params['age'] = 0
     self._risk_model_repository._repository[
         'antiHypertensiveCount']._params['sbp'] = 0
     self._risk_model_repository._repository[
         'antiHypertensiveCount']._params['intercept'] = 0
Exemplo n.º 13
0
    def setUp(self):
        self.joe = Person(
            42,
            NHANESGender.MALE,
            NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            140,
            90,
            5.5,
            50,
            200,
            25,
            90,
            150,
            45,
            0,
            Education.COLLEGEGRADUATE,
            SmokingStatus.NEVER,
            AlcoholCategory.NONE,
            0,
            0,
            0,
            0,
            initializeAFib,
        )

        self.joe_with_mi = copy.deepcopy(self.joe)
        self.joe_with_mi.add_outcome_event(Outcome(OutcomeType.MI, False))

        self.joe_with_stroke = copy.deepcopy(self.joe)
        self.joe_with_stroke.add_outcome_event(Outcome(OutcomeType.STROKE, False))

        self._population_dataframe = init_vectorized_population_dataframe(
            [self.joe, self.joe_with_mi, self.joe_with_stroke],
            with_base_gcp=True,
        )

        self._always_positive_repository = AlwaysPositiveOutcomeRepository()
        self._always_negative_repository = AlwaysNegativeOutcomeRepository()
        self.cvDeterminer = CVOutcomeDetermination(self._always_positive_repository)
Exemplo n.º 14
0
 def getPerson(self, baselineSBP=140, baselineDBP=80):
     return Person(
         age=75,
         gender=0,
         raceEthnicity=1,
         sbp=baselineSBP,
         dbp=baselineDBP,
         a1c=6.5,
         hdl=50,
         totChol=210,
         ldl=90,
         trig=150,
         bmi=22,
         waist=50,
         anyPhysicalActivity=0,
         education=Education.COLLEGEGRADUATE,
         smokingStatus=1,
         alcohol=0,
         antiHypertensiveCount=0,
         statin=0,
         otherLipidLoweringMedicationCount=0,
         creatinine=0.0,
         initializeAfib=TestTreatmentStrategy.initializeAfib,
     )
    def setUp(self):
        self.baseAge = 55
        self.baseSBP = 120
        self._white_male = Person(
            age=self.baseAge,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_copy_paste = Person(
            age=self.baseAge,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_one_year = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_female = Person(
            age=self.baseAge,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._black_female = Person(
            age=self.baseAge,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_sbp = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP + 10,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_dbp = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=90,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_a1c = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=7,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_hdl = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=60,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_totChol = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=223,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_ldl = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=100,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_trig = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=160,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_bmi = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=25,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_waist = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=36,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_activity = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=1,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_minus_edudcation = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=1,
            education=Education.HIGHSCHOOLGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_smoking = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=1,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.CURRENT,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_bpMed = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=1,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_statin = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=1,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_male_plus_lipid = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=1,
            initializeAfib=initializeAfib)

        self._white_male_plus_afib = Person(
            age=self.baseAge + 1,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfibAlwaysPositive)

        self._baseline_stroke_person = Person(
            age=self.baseAge,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib,
            selfReportStrokeAge=50)

        self._baseline_stroke_person_copy_paste = Person(
            age=self.baseAge,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=self.baseSBP,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib,
            selfReportStrokeAge=50)
Exemplo n.º 16
0
    def setUp(self):
        self._test_case_one = Person(
            age=65 - 0.828576318 * 10,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120 + 0.45 * 10,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100 - 1.1 * 10),
            hdl=50,
            totChol=127 - 3.64 * 10,
            ldl=90,
            trig=150,
            bmi=26.6 + 15.30517532,
            waist=94 + 19.3,
            anyPhysicalActivity=1,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=1,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestGCPModel.initializeAfib,
        )

        self._test_case_two = Person(
            age=65 - 0.458555784 * 10,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120 + 0.3 * 10,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100 + 0.732746529 * 10),
            hdl=50,
            totChol=127 + 1.18 * 10,
            ldl=90,
            trig=150,
            bmi=26.6 + 0.419305619,
            waist=94 - 2.5,
            anyPhysicalActivity=1,
            education=Education.SOMEHIGHSCHOOL,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestGCPModel.initializeAfib,
        )

        self._test_case_three = Person(
            age=65 - 0.358692676 * 10,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120 + 2.3 * 10,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100 + 0.8893 * 10),
            hdl=50,
            totChol=127 + 4.7769 * 10,
            ldl=90,
            trig=150,
            bmi=26.6 + 2.717159247,
            waist=94 + 9,
            anyPhysicalActivity=1,
            education=Education.LESSTHANHIGHSCHOOL,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=1,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestGCPModel.initializeAfib,
        )
        self._test_case_one._randomEffects["gcp"] = 0
        self._test_case_two._randomEffects["gcp"] = 0
        self._test_case_three._randomEffects["gcp"] = 0
Exemplo n.º 17
0
    def setUp(self):
        self._white_male = Person(
            age=55,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._black_male = Person(
            age=55,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=200,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._black_treated_male = Person(
            age=55,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=200,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=1,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._white_female = Person(
            age=55,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._black_female = Person(
            age=55,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120,
            dbp=80,
            a1c=6,
            hdl=50,
            totChol=213,
            ldl=90,
            trig=150,
            bmi=22,
            waist=34,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            initializeAfib=initializeAfib)

        self._outcome_model_repository = OutcomeModelRepository()
Exemplo n.º 18
0
    def setUp(self):
        # 2740200061fos
        self._test_case_one = Person(
            age=54.060233,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.HIGHSCHOOLGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestDementiaModel.initializeAfib,
            initializationRepository=InitializationRepository(),
        )
        self._test_case_one._gcp[0] = 58.68
        self._test_case_one._gcp.append(self._test_case_one._gcp[0] -
                                        1.1078128)

        # 2740201178fos
        self._test_case_two = Person(
            age=34.504449,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.SOMECOLLEGE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestDementiaModel.initializeAfib,
            initializationRepository=InitializationRepository(),
        )
        self._test_case_two._gcp[0] = 58.68
        self._test_case_two._gcp.append(self._test_case_two._gcp[0] -
                                        1.7339989)

        self._test_case_one_parameteric = Person(
            age=40,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.LESSTHANHIGHSCHOOL,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestDementiaModel.initializeAfib,
            initializationRepository=InitializationRepository(),
        )
        self._test_case_one_parameteric._gcp[0] = 25
        # GCP slope is zero
        self._test_case_one_parameteric._gcp.append(
            self._test_case_one._gcp[0])

        # test case 71 in rep_gdta.
        self._test_case_two_parametric = Person(
            age=80,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestDementiaModel.initializeAfib,
            initializationRepository=InitializationRepository(),
        )
        self._test_case_two_parametric._gcp[0] = 75
        self._test_case_two_parametric._gcp.append(self._test_case_two._gcp[0])

        # test case 72 in rep_gdta.
        self._test_case_three_parametric = Person(
            age=80,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            # guessingon the centering standard for glucose...may have to check
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0,
            initializeAfib=TestDementiaModel.initializeAfib,
            initializationRepository=InitializationRepository(),
        )
        self._test_case_three_parametric._gcp[0] = 75
        self._test_case_three_parametric._gcp.append(
            self._test_case_two._gcp[0])

        self._population_dataframe = init_vectorized_population_dataframe([
            self._test_case_one,
            self._test_case_two,
        ])
Exemplo n.º 19
0
    def setUp(self):
        popSize = 100
        age = np.random.normal(loc=70, scale=20, size=popSize)
        sbp = age * 1.05 + np.random.normal(loc=40, scale=30, size=popSize)
        df = pd.DataFrame({"age": age, "sbp": sbp})
        simpleModel = statsmodel.ols(formula="sbp ~ age", data=df)
        self.simpleModelResultSM = simpleModel.fit()
        self.simpleModelResult = RegressionModel(
            self.simpleModelResultSM.params.to_dict(),
            self.simpleModelResultSM.bse.to_dict(),
            self.simpleModelResultSM.resid.mean(),
            self.simpleModelResultSM.resid.std(),
        )

        self.person = Person(
            age=80,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            a1c=5.5,
            hdl=50,
            totChol=200,
            bmi=27,
            ldl=90,
            trig=150,
            waist=70,
            anyPhysicalActivity=0,
            education=Education.COLLEGEGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.NONE,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0.0,
            initializeAfib=initializeAfib,
        )

        self.people = [
            Person(
                age=80,
                gender=NHANESGender.MALE,
                raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
                sbp=bpinstance,
                dbp=80,
                a1c=5.5,
                hdl=50,
                totChol=200,
                bmi=27,
                ldl=90,
                trig=150,
                waist=70,
                anyPhysicalActivity=0,
                education=Education.COLLEGEGRADUATE,
                smokingStatus=SmokingStatus.NEVER,
                alcohol=AlcoholCategory.NONE,
                antiHypertensiveCount=0,
                statin=0,
                otherLipidLoweringMedicationCount=0,
                creatinine=0.0,
                initializeAfib=initializeAfib,
            ) for bpinstance in sbp
        ]
        for person in self.people:
            self.advancePerson(person)
        self.population_dataframe = init_vectorized_population_dataframe(
            self.people,
            with_base_gcp=True,
        )

        df2 = pd.DataFrame({
            "age":
            age,
            "sbp": [person._sbp[-1] for person in self.people],
            "meanSbp":
            [np.array(person._sbp).mean() for person in self.people],
        })

        self.meanModelResultSM = statsmodel.ols(formula="sbp ~ age + meanSbp",
                                                data=df2).fit()
        self.meanModelResult = RegressionModel(
            self.meanModelResultSM.params.to_dict(),
            self.meanModelResultSM.bse.to_dict(),
            self.meanModelResultSM.resid.mean(),
            self.meanModelResultSM.resid.std(),
        )

        df3 = pd.DataFrame({
            "age":
            age,
            "sbp": [person._sbp[-1] for person in self.people],
            "logMeanSbp":
            [np.log(np.array(person._sbp).mean()) for person in self.people],
        })

        self.logMeanModelResultSM = statsmodel.ols(
            formula="sbp ~ age + logMeanSbp", data=df3).fit()
        self.logMeanModelResult = RegressionModel(
            self.logMeanModelResultSM.params.to_dict(),
            self.logMeanModelResultSM.bse.to_dict(),
            self.logMeanModelResultSM.resid.mean(),
            self.logMeanModelResultSM.resid.std(),
        )

        race = np.random.randint(1, 5, size=popSize)
        df4 = pd.DataFrame({"age": age, "sbp": sbp, "raceEthnicity": race})
        df4.raceEthnicity = df4.raceEthnicity.astype("category")
        self.raceModelResultSM = statsmodel.ols(
            formula="sbp ~ age + raceEthnicity", data=df4).fit()
        self.raceModelResult = RegressionModel(
            self.raceModelResultSM.params.to_dict(),
            self.raceModelResultSM.bse.to_dict(),
            self.raceModelResultSM.resid.mean(),
            self.raceModelResultSM.resid.std(),
        )

        dfMeanAndLag = pd.DataFrame({
            "age":
            age,
            "sbp": [person._sbp[-1] for person in self.people],
            "meanSbp":
            [np.array(person._sbp).mean() for person in self.people],
            "lagSbp": [person._sbp[-1] for person in self.people],
        })

        self.meanLagModelResultSM = statsmodel.ols(
            formula="sbp ~ age + meanSbp + lagSbp", data=dfMeanAndLag).fit()
        self.meanLagModelResult = RegressionModel(
            self.meanLagModelResultSM.params.to_dict(),
            self.meanLagModelResultSM.bse.to_dict(),
            self.meanLagModelResultSM.resid.mean(),
            self.meanLagModelResultSM.resid.std(),
        )

        self.ageSbpInteractionCoeff = 0.02
        self.sbpInteractionCoeff = 0.5
        self.interactionModel = RegressionModel(
            {
                "meanSbp#age": self.ageSbpInteractionCoeff,
                "meanSbp": self.sbpInteractionCoeff,
                "Intercept": 0,
            },
            {
                "meanSbp#age": 0.0,
                "meanSbp": 0.0
            },
            0,
            0,
        )
Exemplo n.º 20
0
    def setUp(self):
        self._black_female_high_cr = Person(
            age=52,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120,
            dbp=80,
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.HIGHSCHOOLGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0.8,
            initializeAfib=TestCKDEquation.initializeAfib,
        )

        self._black_female_low_cr = Person(
            age=52,
            gender=NHANESGender.FEMALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_BLACK,
            sbp=120,
            dbp=80,
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.HIGHSCHOOLGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0.4,
            initializeAfib=TestCKDEquation.initializeAfib,
        )

        self._white_male_high_cr = Person(
            age=52,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.HIGHSCHOOLGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=1.2,
            initializeAfib=TestCKDEquation.initializeAfib,
        )

        self._white_male_low_cr = Person(
            age=52,
            gender=NHANESGender.MALE,
            raceEthnicity=NHANESRaceEthnicity.NON_HISPANIC_WHITE,
            sbp=120,
            dbp=80,
            a1c=Person.convert_fasting_glucose_to_a1c(100),
            hdl=50,
            totChol=150,
            ldl=90,
            trig=150,
            bmi=26.6,
            waist=94,
            anyPhysicalActivity=1,
            education=Education.HIGHSCHOOLGRADUATE,
            smokingStatus=SmokingStatus.NEVER,
            alcohol=AlcoholCategory.ONETOSIX,
            antiHypertensiveCount=0,
            statin=0,
            otherLipidLoweringMedicationCount=0,
            creatinine=0.1,
            initializeAfib=TestCKDEquation.initializeAfib,
        )