Exemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser(description='Provide parameters!')
    parser.add_argument('tempo', help="Provide tempo of the song!", type=int)
    parser.add_argument('key', help="Provide key of the song!", type=int)
    parser.add_argument('scale', help="Provide scale of the song!", type=int)
    parser.add_argument('number_of_bars', help="Provide number of bars!", type=int)
    parser.add_argument('meter', help="Provide the meter of the song!", type=int)
    parser.add_argument('octaves_range', help="Provide the range of octaves", type=int)
    parser.add_argument('song_name', help="Provide song name", type=str)
    args = parser.parse_args()

    tempo = args.tempo
    key = args.key
    scale = args.scale
    number_of_bars = args.number_of_bars
    meter = args.meter
    octaves_range = args.octaves_range
    song_name = "resources/" + args.song_name + ".mid"

    with open('resources/scales.txt', 'r') as f:
        x = f.readlines()

        # scales are in scales.txt file
        if scale > len(x):
            print("Scale number is out of range")
            sys.exit()

    if key > 11 or key < 0:
        print("Key number should be between 0 - 11")
        sys.exit()

    if meter < 1 or meter > 7:
        print("Meter should be between 1 - 7")
        sys.exit()

    if tempo < 1 or tempo > 300:
        print("Tempo should be between 1 - 300")
        sys.exit()

    if number_of_bars < 1 or number_of_bars > 50:
        print("Number of bars should be between 1 - 50")
        sys.exit()

    if octaves_range < 1 or octaves_range > 3:
        print("Number of octaves should be between 1 - 3")
        sys.exit()

    scale_list = x[scale-1].replace('\n', '')
    scale_list = scale_list.split(", ")

    tempo *= 4
    meter *= 4
    song = Song(number_of_bars, scale_list, tempo, key, meter, octaves_range)

    song.generate_song()

    midi = MIDITime(tempo, song_name)
    song_notes = song.notes
    midi.add_track(song_notes)
    midi.save_midi()
Exemplo n.º 2
0
class Music:
    def parser(self, args):
        self.filename = args.filename + '.mid'
        self.repeats = args.repeats
        self.long = 10 + args.long * 10
        self.tempo = 72 + args.speed * 12
        self.pitch_max = 68 + args.speed * 4
        self.pitch_min = 33 + args.speed * 4
        self.duration_max = 2.7 - args.speed * 0.3
        self.duration_min = 1.8 - args.speed * 0.2
        self.mymidi = MIDITime(self.tempo, self.filename)
        self.midinotes = []

    def rand(self):
        for i in range(0, self.long):
            self.midinotes.append([
                i * 0.53,
                randint(self.pitch_min, self.pitch_max),
                randint(70, 130),
                random.uniform(self.duration_min, self.duration_max)
            ])
        j = 0
        for j in range(1, self.repeats):
            for i in range(0, self.long):
                self.midinotes.append([
                    j * self.long * 0.53 + i * 0.53, self.midinotes[i][1],
                    self.midinotes[i][2], self.midinotes[i][3]
                ])
        self.mymidi.add_track(self.midinotes)

    def saveAndLaunch(self):
        self.mymidi.save_midi()
        os.startfile(self.filename)
Exemplo n.º 3
0
    def generate(self, lenght, path_in, path_out, bmp, nutes_max):
        mymidi = MIDITime(bmp, path_out)

        midinotes = self.algorithm.compose(lenght, path_in, nutes_max)

        mymidi.add_track(midinotes)
        mymidi.save_midi()
Exemplo n.º 4
0
def main():
    args = args_parser.parse_args()

    vel = 127
    scale = MINOR if args.scale == "MINOR" else MAJOR

    # opens file with poem to parse
    with open(args.poem, 'r', encoding="UTF-8") as poem:
        poem_lines = poem.readlines()

    letter_notes = letter_notes_dict(args.lang, args.gama, scale)

    # sometimes there is strange utf sig in the first spot
    if poem_lines[0][0].lower() not in letter_notes.keys():
        poem_lines[0] = poem_lines[0][1:]

    # lowers all notes if necessary
    if args.l:
        for letter, note in letter_notes.items():
            letter_notes[letter] = note - 12

    rhythm_maker = RhythmMaker(args.rhythm)
    chord_maker = ChordMaker(scale, vel // 2, args.chords)

    song = Song(vel, letter_notes, chord_maker, rhythm_maker)
    for line in poem_lines:
        for word in line.split():
            song.add_tact(word)

    mymidi = MIDITime(90, args.o)
    mymidi.add_track(song.print())

    mymidi.save_midi()
    def csv_to_miditime(self, infile, outfile, octave):
        raw_data = list(self.read_csv(infile))

        mymidi = MIDITime(self.tempo, outfile, self.seconds_per_year, self.base_octave, self.octave_range, self.epoch)

        note_list = []

        for r in raw_data:
            began_date = datetime.strptime(r["began_date"], "%Y-%m-%d %H:%M:%S+00:00")  # 2009-01-15 16:15:00+00:00
            ended_date = datetime.strptime(r["ended_date"], "%Y-%m-%d %H:%M:%S+00:00")

            began_days_since_epoch = mymidi.days_since_epoch(began_date)
            ended_days_since_epoch = mymidi.days_since_epoch(ended_date)

            start_beat = mymidi.beat(began_days_since_epoch)
            end_beat = mymidi.beat(ended_days_since_epoch)
            duration_in_beats = end_beat - start_beat

            if duration_in_beats < 3:
                duration_in_beats = 3
            # print start_beat, duration_in_beats
            note_list = note_list + self.bigger_boat(round(start_beat), duration_in_beats, mymidi, octave)

        # Add a track with those notes
        mymidi.add_track(note_list)

        # Output the .mid file
        mymidi.save_midi()
Exemplo n.º 6
0
def test_sequencer_simple(out="out.mid", bpm=120, beats_per_bar=5):
    mt = MIDITime(bpm, out)

    seq = Sequencer(beats_per_bar=beats_per_bar, perturb_velocity_cap=20)

    start = 0
    end = 120

    pi = [BassDrum1, S, AcousticSnare, ClosedHiHat, BassDrum1]
    pv = [H, 0, M, M, H]
    pd = [1, 1, 1, 1, 1]
    pattern = Pattern("drum", 1, pi, pv, pd, repeatable=True)

    seq.time = start
    seq.channel = CHANNEL_DRUMS

    if not seq.compatible(pattern):
        print("Pattern incompatible")
        return

    while seq.time < end:
        if not seq.append(pattern):
            print("Couldn't append")

    # print(seq.notes())

    mt.add_track(seq.notes)

    save_midi(mt)
Exemplo n.º 7
0
def create_midi_file(fileName, bpm = 120, data = [], outputRange=2, songBeatLength=60):
	# first normalize data by deviation
	magnitudeMean = sum([d[1] for d in data]) / len([d[1] for d in data])

	deviations = [(d[1] - magnitudeMean) for d in data]
	magnitudeMin = min(deviations)
	magnitudeMax = max(deviations)


	# (bpm, filename, sec per year, base octave,octave range)
	mymidi = MIDITime(bpm, fileName, 5, 4, outputRange)
	# add {'event_date': , 'magnitude': }

	note_list = []

	# tie everything to 60 beats
	# [time, pitch, velocity, duration]
	beatsPerDataPoint = float(songBeatLength) / len(deviations)
	i = 0
	for d in deviations:
	    note_list.append([
	        i * beatsPerDataPoint, # beat
	        mag_to_pitch_tuned(d, mymidi, magnitudeMin, magnitudeMax),
	        100,  # velocity
	        beatsPerDataPoint  # duration, in beats
	    ])
	    i=i+1

	# Add a track with those notes
	mymidi.add_track(note_list)

	mymidi.save_midi()
Exemplo n.º 8
0
def test_drums_simple(out="out.mid", bpm=120, beats_per_bar=5):
    mt = MIDITime(bpm, out)

    start = 0
    end = 120

    drums = []

    d = 1
    v = 127
    for t in range(start, end):
        step = t % beats_per_bar
        if step == 0:
            n = BassDrum1
            drums.append([[t, n, v, d], CHANNEL_DRUMS])
        elif step == 2:
            n = AcousticSnare
            drums.append([[t, n, v, d], CHANNEL_DRUMS])
        elif step == 3:
            n = ClosedHiHat
            drums.append([[t, n, v, d], CHANNEL_DRUMS])
        elif step == 4:
            n = BassDrum1
            drums.append([[t, n, v, d], CHANNEL_DRUMS])

    mt.add_track(drums)

    save_midi(mt)
    def just_jaws(self, outfile):  # Just play the whole song
        mymidi = MIDITime(self.tempo, outfile, self.seconds_per_year, self.base_octave, self.octave_range, self.epoch)
        note_list = self.bigger_boat(0, 70, mymidi, 3)
        # Add a track with those notes
        mymidi.add_track(note_list)

        # Output the .mid file
        mymidi.save_midi()
    def just_jaws(self, outfile):  # Just play the whole song
        mymidi = MIDITime(self.tempo, outfile, self.seconds_per_year,
                          self.base_octave, self.octave_range, self.epoch)
        note_list = self.bigger_boat(0, 70, mymidi, self.base_octave)
        # Add a track with those notes
        mymidi.add_track(note_list)

        # Output the .mid file
        mymidi.save_midi()
Exemplo n.º 11
0
def test_hi_ride_sounds(out="out.mid", bpm=180, beats_per_bar=5):
    mt = MIDITime(bpm, out)

    seq = Sequencer(beats_per_bar=beats_per_bar, perturb_velocity_cap=30)

    start = 0
    end = 120

    pi = []  # length, character, ability to be looped

    # drummer - main
    pi = []

    pi.append(ClosedHiHat)  # very short tss, repeat
    pi.append(SILENCE)
    pi.append(PedalHiHat)  # very short tss 2, repeat
    pi.append(SILENCE)
    pi.append(ClosedHiHat)  # very short tss, repeat
    pi.append(SILENCE)
    pi.append(PedalHiHat)  # very short tss 2, repeat
    pi.append(OpenHiHat)  # long tss, single
    pi.append(RideCymbal2)  # long, repeat
    pi.append(SILENCE)
    pi.append(RideCymbal2)  # long, repeat
    pi.append(SILENCE)
    pi.append(RideCymbal2)  # long, repeat
    pi.append(SILENCE)
    pi.append(RideBell)  # long bell, repeat
    pi.append(CrashCymbal1)  # long crash, single

    # pi = [val for val in pi for _ in range(0, 4)]
    pv = []
    pd = []

    pattern = Pattern("drums",
                      int(ceil(len(pi) / beats_per_bar)),
                      pi,
                      pv,
                      pd,
                      repeatable=True)

    seq.channel = CHANNEL_DRUMS
    seq.time = start

    if not seq.compatible(pattern):
        print("Pattern incompatible")
        return

    while seq.time < end:
        if not seq.append(pattern):
            print("Couldn't append")

    mt.add_track(seq.notes)

    save_midi(mt)
Exemplo n.º 12
0
 def generate(self):
     filename = self.generate_filename()
     mymidi = MIDITime(self.tempo, self.location + filename)
     if self.mode == 0:
         midinotes = self.mode0()
     elif self.mode == 1:
         midinotes = self.mode1()
     else:
         midinotes = self.mode2()
     mymidi.add_track(midinotes)
     mymidi.save_midi()
Exemplo n.º 13
0
 def generate(self, pace, duration, probability):
     midi = MIDITime(tempo=pace, outfile=self.filename)
     notes_count = int(duration * pace / 60)
     notes = []
     x = get_max_probability(probability)
     for i in range(0, notes_count):
         x = get_random(probability, x)[0]
         if x < 128:
             notes.append([i, x, 127, randint(3, 5)])
     midi.add_track(notes)
     midi.save_midi()
Exemplo n.º 14
0
def test_generator(out="out.mid", bpm=120, beats_per_bar=5):
    mt = MIDITime(bpm, out)

    seq = Sequencer(beats_per_bar=beats_per_bar, perturb_velocity_cap=10)

    prng = RandomState(75123481)

    start = 0
    end = 120

    scale = [A, C, D, E, G]

    # create the pattern as directions for a walk within a scale
    pi = [STAY, -1, UP, -1, UP, DOWN, ROOT_DOWN, -1, -1, NEXT_ROOT]
    pv = [H, 0, M, 0, H, H, M, 0, 0, M]
    pd = [2, 1, 1, 3, 1, 1, 3, 0, 0, 1]
    pattern0 = Pattern("piano1", 2, pi, pv, pd, repeatable=True)
    patterns = [
        pattern0.walk_from_these_directions(len(scale), prng)
        for _ in range(1, 10)
    ]

    patterns = [p for p in patterns if p]
    print("available: ", len(patterns))
    if not patterns:
        print("Couldn't generate any patterns from these directions.")
        return

    for (i, p) in enumerate(patterns):
        print(i, ": ", p.indices)

    pattern = patterns[0]

    # convert to sounds
    walker = ScaleWalker(Scale(ScaleBlueprint(scale), E))
    pattern = pattern.sound_pattern_from_this_walk(walker)

    seq.time = start

    if not seq.compatible(pattern):
        print("Pattern incompatible")
        return

    while seq.time < end:
        if not seq.append(pattern):
            print("Couldn't append")

    print(seq.notes)

    mt.add_track(seq.notes)

    save_midi(mt)
Exemplo n.º 15
0
def main():
	args = return_args()
	dates = getDateRange(args.days)
	getRequest(dates, args.minmag)
	myLocation=getLocation()
	domains = parseQuakes(myLocation)
	#domains = {'distance': (33.69, 11845.77), 'depth': (0.42, 599.18), 'magnitude': (2.5, 7.2)}
	quake_midi = MIDITime(outfile=args.outfile, tempo=args.tempo, base_octave=args.base, octave_range=args.range)
	track_list = create_track_list(quake_midi, domains, args.key, args.patches)
	for note_list in track_list:
		quake_midi.add_track(note_list)
	print args.patches
	quake_midi.save_midi()
Exemplo n.º 16
0
def playMusic(long, tempo, pitch, velocity, duration):
    global mymidi, midinotes, i
    mymidi = MIDITime(tempo, filename)
    midinotes = []
    for i in range(0, long):
        midinotes.append([
            i * 0.5,
            randint(48, pitch),
            randint(70, velocity),
            randint(1, duration)
        ])
    mymidi.add_track(midinotes)
    mymidi.save_midi()
    os.startfile(filename)
Exemplo n.º 17
0
def notes_to_midi_file(note_list, filename, tempo=_default_tempo):
    """Creates a midi file from a list of notes."""
    midifile = MIDITime(_default_tempo, filename)
    
    time = 0
    midi_event_list = []

    note_list = flatten(note_list)      #flatten the note list
    for note in note_list:
        midi_event_list.append([time, note, 200, 1])
        time += 1
    
    midifile.add_track(midi_event_list)
    midifile.save_midi()
Exemplo n.º 18
0
class SongGenerator:
    def __init__(self, file_name, song_speed, song_mode, tones_range, notes):
        self.song = MIDITime(song_speed, file_name)  #song
        self.song_mode = song_mode  #if curvy or slight
        self.tones_range = tones_range  # (60 - range ... 60 ... 60 + range)
        self.notes = notes  #list with notes

    def generate_song(self):
        bit = 0  #start bit counter
        notes = []  #cut notes

        main_note = 60  #begin with 60 (C0)
        prev_note = 0  #previous note (needed to slighty style)

        for note in self.notes:
            note_details = []  #list to put in main notes list

            note_details.append(bit)  # at n bit
            bit += 1

            main_note = self.generate_single_note(self.song_mode, note,
                                                  prev_note,
                                                  main_note)  #generate note
            note_details.append(main_note)
            prev_note = note  #set previous as current

            note_details.append(127)  #velocity
            note_details.append(randint(0, 10))  #duration of note

            notes.append(note_details)  #add note details do main notes list

        print("Notes details:")
        self.song.add_track(notes)  #add list to song
        self.song.save_midi()  #save song
        print("Song succesfully saved!")

    def generate_single_note(self, mode, current_note, prev_note,
                             main_note):  #generate note using a note list
        start_note = 60  #begin with c0

        if mode == 0:  #if curvy then return note parsed to [60 - tones_range ... 60 ... 60 + tones_range]
            return current_note % (self.tones_range * 2) + (start_note -
                                                            self.tones_range)
        else:  #if slightly then main note depends on previous note
            if (prev_note > current_note > (start_note - self.tones_range)):
                return main_note - 1
            elif (prev_note < current_note < (start_note + self.tones_range)):
                return main_note + 1
            return main_note
Exemplo n.º 19
0
def midify(sumsinearray):
    counter = 0
    global mymidi
    for i in range(len(sumsinearray)):
        name = str(sumsinearray[i][1]) +'.mid'
        mymidi = MIDITime(120, name, 4, 5, 1)
        my_data = dictify(sumsinearray[i][0])
        my_data_timed = [{'beat': mymidi.beat(d['datapoint']), 'magnitude': d['magnitude']} for d in my_data]
        start_time = my_data_timed[0]['beat']
        note_list = builtnotelist(my_data_timed, start_time)
    # Add a track with those notes
        mymidi.add_track(note_list)
    # Output the .mid file
        mymidi.save_midi()
        counter += 1
Exemplo n.º 20
0
def generate_file(filepath, time, option, bpm):

    directory = path.dirname(filepath)
    # if path is not created, makes one
    if directory != '' and not path.exists(directory):
        makedirs(directory)

    mymidi = MIDITime(bpm, filepath)

    # Create a list of notes. Each note is a list: [time, pitch, velocity, duration]
    # notes as an object
    sounds = musicnotes.Notes(time, 0, option)
    midinotes = sounds.notes

    magicnotes = [
        [0, 61, 127, 3],
        [2, 66, 127, 2],
        [5, 69, 127, 1],
        [6, 68, 127, 2],
        [8, 66, 127, 2],
        [11, 73, 127, 2],
        [13, 71, 127, 4],
        [18, 68, 107, 2],
        [22, 66, 100, 2],
        [25, 69, 127, 1],
        [26, 68, 127, 1],
        [28, 64, 117, 2],
        [31, 66, 100, 2],
        [33, 61, 90, 3],
    ]

    if filepath.endswith('magic.mid'):
        mymidi = MIDITime(240, filepath)
        mymidi.add_track(magicnotes)
        mymidi.save_midi()
        exit(0)

    # Add a track with those notes
    mymidi.add_track(midinotes)

    # Output the .mid file
    mymidi.save_midi()
Exemplo n.º 21
0
    def list_to_miditime(self, raw_data, outfile, octave):
        mymidi = MIDITime(self.tempo, outfile, self.seconds_per_mile,
                          self.base_octave, self.octave_range, self.epoch)

        note_list = []
        start_note_index = 0

        border_full_length = self.border_full_length()
        print border_full_length

        for r in raw_data:
            segment_start_meters = r['start_pct'] * border_full_length

            segment_start_beat = self.nearest_nth_beat(
                self.beat_meters(segment_start_meters), 16)
            segment_end_beat = self.nearest_nth_beat(
                self.beat_meters(segment_start_meters + r['length_m']), 16)
            duration_in_beats = segment_end_beat - segment_start_beat
            if duration_in_beats == 0:
                duration_in_beats = float(1) / float(
                    16)  # Minimum duration of 1/16
            if r['type'] == 'pedestrian':
                pitch = 'E5'
            elif r['type'] == 'vehicle':
                pitch = 'F6'

            # I've left a few other options commented out here. The live version just plays one long note for the duration of the fence segment, but the othres play through a melody. We ended up doing all of our melodic stuff in Live once we had a raw midi file.
            # new_notes, start_note_index = self.bigger_boat_2(segment_start_beat, start_note_index, duration_in_beats, mymidi, octave)
            # new_notes = self.bigger_boat(segment_start_beat, duration_in_beats, mymidi, octave)
            new_notes = self.just_one_note(segment_start_beat,
                                           duration_in_beats, pitch, mymidi,
                                           octave)
            note_list = note_list + new_notes

        # Add a track with those notes
        mymidi.add_track(note_list)

        # Output the .mid file
        mymidi.save_midi()
Exemplo n.º 22
0
class MIDIFile(object):
    def __init__(self, BPM=120, filename='example.mid'):
        self.pattern = MIDITime(BPM, filename)
        self.step_counter = 0
        self.filename = filename

    def create(self, notes):
        midinotes = []
        offset = 60
        attack = 200
        beats = 1
        for note in notes:
            pitch = (note - 1) + offset
            midinote = [self.step_counter, pitch, attack, beats]
            midinotes.append(midinote)
            self.step_counter = self.step_counter + 1

        # Add a track with those notes
        self.pattern.add_track(midinotes)

        # Output the .mid file
        self.pattern.save_midi()
Exemplo n.º 23
0
class Composer:
    def __init__(self, out_file: str = "out.mid"):
        self.__mt = MIDITime(StyleManager().style.bpm, out_file)

        self.drummer = Drummer()
        self.player = PianoPlayer()

    def compose(self, bar_groups: int = 4):

        self.drummer.play(bar_groups)
        self.player.play(bar_groups)

    def save(self):

        tracks = self.drummer.tracks + self.player.tracks

        for notes in tracks:
            self.__mt.add_track(notes)

        if tracks:
            save_midi(self.__mt, StyleManager().style.instruments_per_channel)
        else:
            save_midi(self.__mt)  # empty
Exemplo n.º 24
0
def test_sequencer_relative(out="out.mid", bpm=120, beats_per_bar=10):
    mt = MIDITime(bpm, out)

    seq = Sequencer(beats_per_bar=beats_per_bar, perturb_velocity_cap=10)

    start = 0
    end = 120

    # create the pattern as indices within a scale
    pi = [0, S, 1, S, 2]
    pv = [H, 0, M, 0, H]
    pd = [1, 1, 1, 1, 1]
    pattern = Pattern("piano", 1, pi, pv, pd, repeatable=True)

    # convert to sounds
    walker = ScaleWalker(Scale(ScaleBlueprint([A, C, D, E, G]), E))

    print(pattern.indices)
    pattern = pattern.sound_pattern_from_this_walk(walker)
    print(pattern.indices)

    seq.time = start

    if not seq.compatible(pattern):
        print("Pattern incompatible")
        return

    while seq.time < end:
        if not seq.append(pattern):
            print("Couldn't append")

    print(seq.notes)

    mt.add_track(seq.notes)

    save_midi(mt)
    def csv_to_miditime(self, infile, outfile, octave):
        raw_data = list(self.read_csv(infile))

        mymidi = MIDITime(self.tempo, outfile, self.seconds_per_year,
                          self.base_octave, self.octave_range, self.epoch)

        note_list = []
        start_note_index = 0

        for r in raw_data:
            began_date = datetime.strptime(
                r["began_date"],
                "%Y-%m-%d %H:%M:%S+00:00")  # 2009-01-15 16:15:00+00:00
            ended_date = datetime.strptime(r["ended_date"],
                                           "%Y-%m-%d %H:%M:%S+00:00")

            began_days_since_epoch = mymidi.days_since_epoch(began_date)
            ended_days_since_epoch = mymidi.days_since_epoch(ended_date)

            start_beat = mymidi.beat(began_days_since_epoch)
            end_beat = mymidi.beat(ended_days_since_epoch)
            duration_in_beats = end_beat - start_beat

            # if duration_in_beats < 3:
            #     duration_in_beats = 3
            # print start_beat, duration_in_beats
            new_notes, start_note_index = self.bigger_boat_2(
                start_beat, start_note_index, duration_in_beats, mymidi,
                octave)
            note_list = note_list + new_notes

        # Add a track with those notes
        mymidi.add_track(note_list)

        # Output the .mid file
        mymidi.save_midi()
            notes.extend(note)
        return notes


if debug:
    NotesGenerator.set_debug_mode()
    gen_random_notes = print_arg(gen_random_notes)

if args.seqoff:
    sequence = NotesGenerator(key_string=output,
                              base_duration=1 / 4,
                              segments_number=args.number,
                              max_difference=args.difference,
                              segment_length=args.length)
    notes = sequence.give_notes()
    mymidi.add_track(notes)
    # last note from list of notes and first element -> end time of sound
    max_time = notes[-1][0]
else:
    max_time = args.length * args.number

for i in range(random):
    # duration <- [1/2,2]
    dur = (i + 1) / 2
    notes = gen_random_notes(key_string=output,
                             start=48 + i * 5,
                             num=int(max_time / dur),
                             offset=0,
                             duration=dur)
    mymidi.add_track(notes)
    output = [chr(ord(c) - 1) for c in output]
Exemplo n.º 27
0
def save_midi_file(data, name, bpm):
    mymidi = MIDITime(bpm, name)
    mymidi.add_track(data)
    mymidi.save_midi()
Exemplo n.º 28
0
class bomb2midi(object):
    ''' Submitted by Jennifer LaFleur. '''

    epoch = datetime(
        1945, 1, 1)  # Not actually necessary, but optional to specify your own
    mymidi = None

    min_value = 0
    max_value = 5.7

    tempo = 120

    min_attack = 30
    max_attack = 255

    min_duration = 1
    max_duration = 5

    seconds_per_year = 3

    c_major = ['C', 'D', 'E', 'F', 'G', 'A', 'B']
    c_minor = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'Bb']
    a_minor = ['A', 'B', 'C', 'D', 'E', 'F', 'F#', 'G', 'G#']
    c_blues_minor = ['C', 'Eb', 'F', 'F#', 'G', 'Bb']
    d_minor = ['D', 'E', 'F', 'G', 'A', 'Bb', 'C']
    c_gregorian = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'A', 'Bb']

    current_key = c_major
    base_octave = 2
    octave_range = 5

    def __init__(self):
        self.csv_to_miditime()

    def read_csv(self, filepath):
        csv_file = open(filepath, 'rU')
        return csv.DictReader(csv_file, delimiter=',', quotechar='"')

    def remove_weeks(self, csv_obj):
        return [r for r in csv_obj if r['Date'] not in ['']]

    def round_to_quarter_beat(self, input):
        return round(input * 4) / 4

    def make_notes(self, data_timed, data_key):
        note_list = []

        start_time = data_timed[0]['beat']

        for d in data_timed:
            note_list.append([
                self.round_to_quarter_beat(d['beat'] - start_time),
                self.data_to_pitch_tuned(d[data_key]),
                100,
                #mag_to_attack(d['magnitude']),  # attack
                1  # duration, in beats
            ])
        return note_list

    def csv_to_miditime(self):
        raw_data = list(self.read_csv('data/bombs.csv'))
        filtered_data = self.remove_weeks(raw_data)

        self.mymidi = MIDITime(self.tempo, 'bombtest_log.mid',
                               self.seconds_per_year, self.base_octave,
                               self.octave_range, self.epoch)

        self.minimum = self.mymidi.get_data_range(filtered_data, 'Yieldnum')[0]
        self.maximum = self.mymidi.get_data_range(filtered_data, 'Yieldnum')[1]

        timed_data = []

        for r in filtered_data:
            python_date = datetime.strptime(r["Date"], "%m/%d/%Y")
            days_since_epoch = self.mymidi.days_since_epoch(python_date)
            beat = self.mymidi.beat(days_since_epoch)
            timed_data.append({
                'days_since_epoch': days_since_epoch,
                'beat': beat,
                'BombYieldMillions': float(r['Yieldnum'])
            })

        note_list = self.make_notes(timed_data, 'BombYieldMillions')
        # Add a track with those notes
        self.mymidi.add_track(note_list)

        # Output the .mid file
        self.mymidi.save_midi()

    def data_to_pitch_tuned(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        #scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        # Another option: Linear scale, reverse order
        # scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint, True)
        # print 10**self.maximum
        # Another option: Logarithmic scale, reverse order
        scale_pct = self.mymidi.log_scale_pct(0, self.maximum, datapoint, True,
                                              'log')

        # Pick a range of notes. This allows you to play in a key.
        mode = self.current_key

        #Find the note that matches your data point
        note = self.mymidi.scale_to_note(scale_pct, mode)

        #Translate that note to a MIDI pitch
        midi_pitch = self.mymidi.note_to_midi_pitch(note)
        print scale_pct, note

        return midi_pitch

    def mag_to_attack(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        #max_attack = 10

        adj_attack = (1 - scale_pct) * max_attack + 70
        #adj_attack = 100

        return adj_attack
class Coal2Midi(object):
    ''' Adapted from Jordan Wirfs-Brock's awesome coal production sonification.
    Post here: http://insideenergy.org/2016/05/03/listen-to-u-s-coal-production-fall-off-a-cliff/
    Code and data here: https://github.com/InsideEnergy/Data-for-stories/tree/master/20160503-coal-production-sonification
    '''

    epoch = datetime(1970, 1, 1)  # TODO: Allow this to override the midtime epoch
    mymidi = None

    tempo = 120

    min_attack = 30
    max_attack = 255

    min_duration = 1
    max_duration = 5

    seconds_per_year = 26

    c_major = ['C', 'D', 'E', 'F', 'G', 'A', 'B']
    c_minor = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'Bb']
    a_minor = ['A', 'B', 'C', 'D', 'E', 'F', 'F#', 'G', 'G#']
    c_blues_minor = ['C', 'Eb', 'F', 'F#', 'G', 'Bb']
    d_minor = ['D', 'E', 'F', 'G', 'A', 'Bb', 'C']
    c_gregorian = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'A', 'Bb']

    current_key = c_major
    base_octave = 4
    octave_range = 3

    def __init__(self):
        self.csv_to_miditime()

    def read_csv(self, filepath):
        csv_file = open(filepath, 'rU')
        return csv.DictReader(csv_file, delimiter=',', quotechar='"')

    def remove_weeks(self, csv_obj):
        return [r for r in csv_obj if int(r['Week']) not in [53]]

    def round_to_quarter_beat(self, input):
        return round(input * 4) / 4

    def round_to_half_beat(self, input):
        return round(input * 2) / 2

    def make_notes(self, data_timed, data_key):
        note_list = []

        start_time = data_timed[0]['beat']

        for d in data_timed:
            note_list.append([
                # self.round_to_half_beat(d['beat'] - start_time),
                round(d['beat'] - start_time),
                self.data_to_pitch_tuned(d[data_key]),
                100,
                #mag_to_attack(d['magnitude']),  # attack
                1  # duration, in beats
            ])
        return note_list

    def data_to_pitch_tuned(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        # Another option: Linear scale, reverse order
        # scale_pct = mymidi.linear_scale_pct(0, self.maximum, datapoint, True)

        # Another option: Logarithmic scale, reverse order
        # scale_pct = mymidi.log_scale_pct(0, self.maximum, datapoint, True)

        # Pick a range of notes. This allows you to play in a key.
        mode = self.current_key

        #Find the note that matches your data point
        note = self.mymidi.scale_to_note(scale_pct, mode)

        #Translate that note to a MIDI pitch
        midi_pitch = self.mymidi.note_to_midi_pitch(note)

        return midi_pitch

    def mag_to_attack(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        #max_attack = 10

        adj_attack = (1 - scale_pct) * max_attack + 70
        #adj_attack = 100

        return adj_attack

    def csv_to_miditime(self):
        self.mymidi = MIDITime(self.tempo, 'coaltest.mid', self.seconds_per_year, self.base_octave, self.octave_range)
        raw_data = self.read_csv('data/coal_prod_1984_2016_weeks_summed.csv')
        filtered_data = self.remove_weeks(raw_data)

        self.minimum = self.mymidi.get_data_range(filtered_data, 'CoalProd')[0] / 1000000.0
        self.maximum = self.mymidi.get_data_range(filtered_data, 'CoalProd')[1] / 1000000.0

        timed_data = []

        # Get the first day in the dataset, so we can use it's day of the week to anchor our other weekly data.
        first_day = self.mymidi.map_week_to_day(filtered_data[0]['Year'], filtered_data[0]['Week'])

        for r in filtered_data:
            # Convert the week to a date in that week
            week_start_date = self.mymidi.map_week_to_day(r['Year'], r['Week'], first_day.weekday())
            # To get your date into an integer format, convert that date into the number of days since Jan. 1, 1970
            days_since_epoch = self.mymidi.days_since_epoch(week_start_date)
            # Convert that integer date into a beat
            beat = self.mymidi.beat(days_since_epoch)

            timed_data.append({
                'days_since_epoch': days_since_epoch,
                'beat': beat,
                'CoalProdMillions': float(r['CoalProd']) / 1000000.0
            })

        note_list = self.make_notes(timed_data, 'CoalProdMillions')
        # Add a track with those notes
        self.mymidi.add_track(note_list)

        # Output the .mid file
        self.mymidi.save_midi()
Exemplo n.º 30
0
class Coal2Midi(object):
    ''' Adapted from Jordan Wirfs-Brock's awesome coal production sonification.
    Post here: http://insideenergy.org/2016/05/03/listen-to-u-s-coal-production-fall-off-a-cliff/
    Code and data here: https://github.com/InsideEnergy/Data-for-stories/tree/master/20160503-coal-production-sonification
    '''

    epoch = datetime(1970, 1,
                     1)  # TODO: Allow this to override the midtime epoch
    mymidi = None

    tempo = 120

    min_attack = 30
    max_attack = 255

    min_duration = 1
    max_duration = 5

    seconds_per_year = 26

    c_major = ['C', 'D', 'E', 'F', 'G', 'A', 'B']
    c_minor = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'Bb']
    a_minor = ['A', 'B', 'C', 'D', 'E', 'F', 'F#', 'G', 'G#']
    c_blues_minor = ['C', 'Eb', 'F', 'F#', 'G', 'Bb']
    d_minor = ['D', 'E', 'F', 'G', 'A', 'Bb', 'C']
    c_gregorian = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'A', 'Bb']

    current_key = c_major
    base_octave = 4
    octave_range = 3

    def __init__(self):
        self.csv_to_miditime()

    def read_csv(self, filepath):
        csv_file = open(filepath, 'rU')
        return csv.DictReader(csv_file, delimiter=',', quotechar='"')

    def remove_weeks(self, csv_obj):
        return [r for r in csv_obj if int(r['Week']) not in [53]]

    def round_to_quarter_beat(self, input):
        return round(input * 4) / 4

    def round_to_half_beat(self, input):
        return round(input * 2) / 2

    def make_notes(self, data_timed, data_key):
        note_list = []

        start_time = data_timed[0]['beat']

        for d in data_timed:
            note_list.append([
                # self.round_to_half_beat(d['beat'] - start_time),
                round(d['beat'] - start_time),
                self.data_to_pitch_tuned(d[data_key]),
                100,
                #mag_to_attack(d['magnitude']),  # attack
                1  # duration, in beats
            ])
        return note_list

    def data_to_pitch_tuned(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        # Another option: Linear scale, reverse order
        # scale_pct = mymidi.linear_scale_pct(0, self.maximum, datapoint, True)

        # Another option: Logarithmic scale, reverse order
        # scale_pct = mymidi.log_scale_pct(0, self.maximum, datapoint, True)

        # Pick a range of notes. This allows you to play in a key.
        mode = self.current_key

        #Find the note that matches your data point
        note = self.mymidi.scale_to_note(scale_pct, mode)

        #Translate that note to a MIDI pitch
        midi_pitch = self.mymidi.note_to_midi_pitch(note)

        return midi_pitch

    def mag_to_attack(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        #max_attack = 10

        adj_attack = (1 - scale_pct) * max_attack + 70
        #adj_attack = 100

        return adj_attack

    def csv_to_miditime(self):
        self.mymidi = MIDITime(self.tempo, 'coaltest.mid',
                               self.seconds_per_year, self.base_octave,
                               self.octave_range)
        raw_data = self.read_csv('data/coal_prod_1984_2016_weeks_summed.csv')
        filtered_data = self.remove_weeks(raw_data)

        self.minimum = self.mymidi.get_data_range(filtered_data,
                                                  'CoalProd')[0] / 1000000.0
        self.maximum = self.mymidi.get_data_range(filtered_data,
                                                  'CoalProd')[1] / 1000000.0

        timed_data = []

        # Get the first day in the dataset, so we can use it's day of the week to anchor our other weekly data.
        first_day = self.mymidi.map_week_to_day(filtered_data[0]['Year'],
                                                filtered_data[0]['Week'])

        for r in filtered_data:
            # Convert the week to a date in that week
            week_start_date = self.mymidi.map_week_to_day(
                r['Year'], r['Week'], first_day.weekday())
            # To get your date into an integer format, convert that date into the number of days since Jan. 1, 1970
            days_since_epoch = self.mymidi.days_since_epoch(week_start_date)
            # Convert that integer date into a beat
            beat = self.mymidi.beat(days_since_epoch)

            timed_data.append({
                'days_since_epoch':
                days_since_epoch,
                'beat':
                beat,
                'CoalProdMillions':
                float(r['CoalProd']) / 1000000.0
            })

        note_list = self.make_notes(timed_data, 'CoalProdMillions')
        # Add a track with those notes
        self.mymidi.add_track(note_list)

        # Output the .mid file
        self.mymidi.save_midi()
class bomb2midi(object):
    ''' Submitted by Jennifer LaFleur. '''

    epoch = datetime(1945, 1, 1)  # Not actually necessary, but optional to specify your own
    mymidi = None

    min_value = 0
    max_value = 5.7

    tempo = 120

    min_attack = 30
    max_attack = 255

    min_duration = 1
    max_duration = 5

    seconds_per_year = 3

    c_major = ['C', 'D', 'E', 'F', 'G', 'A', 'B']
    c_minor = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'Bb']
    a_minor = ['A', 'B', 'C', 'D', 'E', 'F', 'F#', 'G', 'G#']
    c_blues_minor = ['C', 'Eb', 'F', 'F#', 'G', 'Bb']
    d_minor = ['D', 'E', 'F', 'G', 'A', 'Bb', 'C']
    c_gregorian = ['C', 'D', 'Eb', 'F', 'G', 'Ab', 'A', 'Bb']

    current_key = c_major
    base_octave = 2
    octave_range = 5

    def __init__(self):
        self.csv_to_miditime()

    def read_csv(self, filepath):
        csv_file = open(filepath, 'rU')
        return csv.DictReader(csv_file, delimiter=',', quotechar='"')

    def remove_weeks(self, csv_obj):
        return [r for r in csv_obj if r['Date'] not in ['']]

    def round_to_quarter_beat(self, input):
        return round(input * 4) / 4

    def make_notes(self, data_timed, data_key):
        note_list = []

        start_time = data_timed[0]['beat']

        for d in data_timed:
            note_list.append([
                self.round_to_quarter_beat(d['beat'] - start_time),
                self.data_to_pitch_tuned(d[data_key]),
                100,
                #mag_to_attack(d['magnitude']),  # attack
                1  # duration, in beats
            ])
        return note_list

    def csv_to_miditime(self):
        raw_data = list(self.read_csv('data/bombs.csv'))
        filtered_data = self.remove_weeks(raw_data)

        self.mymidi = MIDITime(self.tempo, 'bombtest_log.mid', self.seconds_per_year, self.base_octave, self.octave_range, self.epoch)

        self.minimum = self.mymidi.get_data_range(filtered_data, 'Yieldnum')[0]
        self.maximum = self.mymidi.get_data_range(filtered_data, 'Yieldnum')[1]

        timed_data = []

        for r in filtered_data:
            python_date = datetime.strptime(r["Date"], "%m/%d/%Y")
            days_since_epoch = self.mymidi.days_since_epoch(python_date)
            beat = self.mymidi.beat(days_since_epoch)
            timed_data.append({
                'days_since_epoch': days_since_epoch,
                'beat': beat,
                'BombYieldMillions': float(r['Yieldnum'])
            })

        note_list = self.make_notes(timed_data, 'BombYieldMillions')
        # Add a track with those notes
        self.mymidi.add_track(note_list)

        # Output the .mid file
        self.mymidi.save_midi()

    def data_to_pitch_tuned(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        #scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        # Another option: Linear scale, reverse order
        # scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint, True)
        # print 10**self.maximum
        # Another option: Logarithmic scale, reverse order
        scale_pct = self.mymidi.log_scale_pct(0, self.maximum, datapoint, True, 'log')

        # Pick a range of notes. This allows you to play in a key.
        mode = self.current_key

        #Find the note that matches your data point
        note = self.mymidi.scale_to_note(scale_pct, mode)

        #Translate that note to a MIDI pitch
        midi_pitch = self.mymidi.note_to_midi_pitch(note)
        print scale_pct, note

        return midi_pitch

    def mag_to_attack(self, datapoint):
        # Where does this data point sit in the domain of your data? (I.E. the min magnitude is 3, the max in 5.6). In this case the optional 'True' means the scale is reversed, so the highest value will return the lowest percentage.
        scale_pct = self.mymidi.linear_scale_pct(0, self.maximum, datapoint)

        #max_attack = 10

        adj_attack = (1 - scale_pct) * max_attack + 70
        #adj_attack = 100

        return adj_attack
    #Translate that note to a MIDI pitch
    midi_pitch = mymidi.note_to_midi_pitch(note)

    return midi_pitch


note_list = []

z_scores = stats.zscore(data_list)
exp_score = [math.ceil(math.exp(x) * 4) / 4 for x in z_scores]

i = 0
for d in my_data_timed:
    note_list.append([
        d['beat'] - start_time,
        mag_to_pitch_tuned(d['magnitude_change']),
        100,  # velocity
        exp_score[i]  # duration, in beats
    ])
    i += 1

# Add a track with those notes
mymidi.add_track(note_list)

# Output the .mid file
mymidi.save_midi()

#sum = sum(exp_score)
#softmax_score = [x / sum for x in exp_score]
print(exp_score)
Exemplo n.º 33
0
    set_note_array(notes_arp, 2)


def set_note_array(arrai, PROTOCOL):
    j = 0
    # loop to go through all the available notes
    for i in arrai:
        rnd = random.randint(0, 2)
        #append notes to the note's array
        midinotes.append([j + rnd, i, 127, PROTOCOL])
        j = j + 1 + rnd


# Inicialize song
song = MIDITime(BPM, output)
song.add_track(midinotes)

# main
# Output of the MIDI data to a file.mid
clean_listas()

#binary streams kek
f_udp = f_arp = f_dhcp = f_tcp = ""
for i in range(len(udp)):
    f_udp += udp[i]
for i in range(len(tcp)):
    f_tcp += tcp[i]
for i in range(len(arp)):
    f_arp += arp[i]

#start the program
Exemplo n.º 34
0
    def process(self):
        logging.info("Generating MIDI...")
        bpm = self.bpm
        bar_bpm = 8
        bar_time = self.results.default_bar_size / bar_bpm

        midi = MIDITime(bpm, self.output_file)
        midi_data = []
        midi_tone_data = []

        curr_beat = 0

        for bar in self.results.bars:
            tone_beat = curr_beat
            for note_ndx, note in bar.notes.items():
                note_midi_length = bar_time * (note.length / bar.bar_size)
                if not note.silent:
                    midi_data.append([
                        curr_beat, note.pitch + (12 if self.rich_mode else 0),
                        127, note_midi_length
                    ])
                curr_beat += note_midi_length

            if not self.rich_mode:
                tone_length = self.results.default_bar_size // len(
                    bar.tones.items())
                for tone_ndx, tone in bar.tones.items():
                    tone_midi_length = bar_time * (tone_length / bar.bar_size)
                    midi_tone_data.append([
                        tone_beat,
                        tone.get_note_index_by_octave(3), 90, tone_midi_length
                    ])
                    midi_tone_data.append([
                        tone_beat,
                        tone.get_note_index_by_octave(4) + 7, 90,
                        tone_midi_length
                    ])
                    if tone.type == ToneType.Dur:
                        midi_tone_data.append([
                            tone_beat,
                            tone.get_note_index_by_octave(4) + 4, 90,
                            tone_midi_length
                        ])
                    if tone.type == ToneType.Mol:
                        midi_tone_data.append([
                            tone_beat,
                            tone.get_note_index_by_octave(4) + 3, 90,
                            tone_midi_length
                        ])

                    tone_beat += tone_midi_length
            else:
                rich_tone_length = self.results.default_bar_size // 8
                rich_tone_real_length = bar_time * (rich_tone_length /
                                                    bar.bar_size)
                tone_accomp_curr = 0
                rich_tone_seq_ndx = 0
                while tone_accomp_curr < bar.bar_size:
                    rich_tone = bar.get_tone_for_note_index(tone_accomp_curr)
                    rich_tone_seq = [
                        rich_tone.get_note_index_by_octave(3),
                        rich_tone.get_note_index_by_octave(4),
                        rich_tone.get_note_index_by_octave(4) +
                        4 if rich_tone.type == ToneType.Dur else
                        rich_tone.get_note_index_by_octave(4) + 3,
                        rich_tone.get_note_index_by_octave(4) + 7,
                    ]
                    midi_tone_data.append([
                        tone_beat, rich_tone_seq[rich_tone_seq_ndx], 90,
                        rich_tone_real_length *
                        (len(rich_tone_seq) - rich_tone_seq_ndx)
                    ])
                    rich_tone_seq_ndx = 0 if rich_tone_seq_ndx >= len(
                        rich_tone_seq) - 1 else rich_tone_seq_ndx + 1
                    tone_beat += rich_tone_real_length
                    tone_accomp_curr += rich_tone_length

        midi.add_track(midi_data)
        midi.add_track(midi_tone_data)
        midi.save_midi()
Exemplo n.º 35
0
from miditime.miditime import MIDITime
import argparse
from soundParametersCreator import soundParametersCreator

parser = argparse.ArgumentParser()
parameters = []
creator = soundParametersCreator()
args = []

# parametres of the sound are made using some strings as keys
parser.add_argument('answ1', type=str)
parser.add_argument('answ2', type=str)
parser.add_argument('answ3', type=str)
parser.add_argument('answ4', type=str)
parser.add_argument('answ5', type=str)
parser.add_argument('answ6', type=str)
parser.add_argument('path', type=str)
parser.add_argument('levelOfNarcoticness', type=int)
args = parser.parse_args()

parameters += creator.createParameter(args.answ1, args.levelOfNarcoticness)
parameters += creator.createParameter(args.answ2, args.levelOfNarcoticness)
parameters += creator.createParameter(args.answ3, args.levelOfNarcoticness)
parameters += creator.createParameter(args.answ4, args.levelOfNarcoticness)
parameters += creator.createParameter(args.answ5, args.levelOfNarcoticness)
parameters += creator.createParameter(args.answ6, args.levelOfNarcoticness)

mymidi = MIDITime(100, args.path)
mymidi.add_track(parameters)
mymidi.save_midi()