Exemplo n.º 1
0
    gendis.compile(optimizer=gen_opt, loss='binary_crossentropy')

    shape = dis.get_input_shape_at(0)[1:]
    gen_input, real_input = Input(shape), Input(shape)
    dis2batch = Model([gen_input, real_input],
                      [dis(gen_input), dis(real_input)])
    dis.trainable = True
    dis2batch.compile(optimizer=dis_opt,
                      loss='binary_crossentropy',
                      metrics=['binary_accuracy'])

    gen_trainner = gendis
    dis_trainner = dis2batch

    imsave('{}/real.png'.format(vis_dir),
           Song.grid_vis_songs(data_generator(25)))
    vis_Z = code_generator(25)
    for iteration in range(0, niter):
        print 'iteration', iteration
        Z = code_generator(nbatch)
        gen_img = gen.predict(Z)

        if iteration < args.boost or iteration % args.k == 0:
            real_img = data_generator(nbatch)
            gen_y = np.zeros((nbatch, 1))
            real_y = np.ones((nbatch, 1))
            d_loss = dis_trainner.train_on_batch([gen_img, real_img],
                                                 [gen_y, real_y])
            print('\tDiscriminator:\t{}'.format(d_loss))
        else:
            y = np.ones((nbatch, 1))
Exemplo n.º 2
0
    shape = dis.get_input_shape_at(0)[1:]
    gen_input, real_input = Input(shape), Input(shape)
    dis2batch = Model([gen_input, real_input],
                      [dis(gen_input), dis(real_input)])
    dis.trainable = True
    dis2batch.compile(optimizer=dis_opt,
                      loss='binary_crossentropy',
                      metrics=['binary_accuracy'])

    gen_trainner = gendis
    dis_trainner = dis2batch

    gh = 2
    gw = 7
    imsave('{}/real.png'.format(vis_dir),
           Song.grid_vis_songs(data_generator(gh*gw)[:, :, :, 0], gh=gh, gw=gw))
    vis_Z = code_generator(gh*gw)
    fake_pool = gen.predict(vis_Z)
    for iteration in range(0, niter):
        print 'iteration', iteration
        Z = code_generator(nbatch)
        gen_img = gen.predict(Z)

        fake_pool = np.vstack([fake_pool[:nbatch], gen_img])
        shuffle_indices = np.random.permutation(len(fake_pool))
        fake_pool = fake_pool[shuffle_indices]
        gen_img = fake_pool[:nbatch]

        real_img = data_generator(nbatch)
        gen_y = np.zeros((nbatch, 1))
        real_y = np.ones((nbatch, 1))