Exemplo n.º 1
0
def validate_int_params(int_param, param_name):
    """
    Verify the parameter which type is integer valid or not.

    Args:
        int_param (int): parameter that is integer,
            including epoch, dataset_batch_size, step_num
        param_name (str): the name of parameter,
            including epoch, dataset_batch_size, step_num

    Raises:
        MindInsightException: If the parameters are invalid.
    """
    if not isinstance(int_param,
                      int) or int_param <= 0 or int_param > pow(2, 63) - 1:
        if param_name == 'step_num':
            log.error(
                'Invalid step_num. The step number should be a positive integer.'
            )
            raise MindInsightException(
                error=LineageErrors.PARAM_STEP_NUM_ERROR,
                message=LineageErrorMsg.PARAM_STEP_NUM_ERROR.value)

        if param_name == 'dataset_batch_size':
            log.error('Invalid dataset_batch_size. '
                      'The batch size should be a positive integer.')
            raise MindInsightException(
                error=LineageErrors.PARAM_BATCH_SIZE_ERROR,
                message=LineageErrorMsg.PARAM_BATCH_SIZE_ERROR.value)
Exemplo n.º 2
0
    def check_comparision(self, data, **kwargs):
        """Check comparision for all parameters in schema."""
        for attr, condition in data.items():
            if attr in ["limit", "offset", "sorted_name", "sorted_type", 'lineage_type']:
                continue

            if not isinstance(attr, str):
                raise LineageParamValueError('The search attribute not supported.')

            if attr not in FIELD_MAPPING and not attr.startswith(('metric/', 'user_defined/')):
                raise LineageParamValueError('The search attribute not supported.')

            if not isinstance(condition, dict):
                raise LineageParamTypeError("The search_condition element {} should be dict."
                                            .format(attr))

            for key in condition.keys():
                if key not in ["eq", "lt", "gt", "le", "ge", "in"]:
                    raise LineageParamValueError("The compare condition should be in "
                                                 "('eq', 'lt', 'gt', 'le', 'ge', 'in').")

            if attr.startswith('metric/'):
                if len(attr) == 7:
                    raise LineageParamValueError(
                        'The search attribute not supported.'
                    )
                try:
                    SearchModelConditionParameter.check_param_value_type(condition)
                except ValidationError:
                    raise MindInsightException(
                        error=LineageErrors.LINEAGE_PARAM_METRIC_ERROR,
                        message=LineageErrorMsg.LINEAGE_METRIC_ERROR.value.format(attr)
                    )
        return data
Exemplo n.º 3
0
    def begin(self, run_context):
        """
        Initialize the training progress when the training job begins.

        Args:
            run_context (RunContext): It contains all lineage information,
                see mindspore.train.callback.RunContext.

        Raises:
            MindInsightException: If validating parameter fails.
        """
        log.info('Initialize training lineage collection...')

        if self.user_defined_info:
            self.lineage_summary.record_user_defined_info(
                self.user_defined_info)

        if not isinstance(run_context, RunContext):
            error_msg = f'Invalid TrainLineage run_context.'
            log.error(error_msg)
            raise LineageParamRunContextError(error_msg)

        run_context_args = run_context.original_args()
        if not self.initial_learning_rate:
            optimizer = run_context_args.get('optimizer')
            if optimizer and not isinstance(optimizer, Optimizer):
                log.error(
                    "The parameter optimizer is invalid. It should be an instance of "
                    "mindspore.nn.optim.optimizer.Optimizer.")
                raise MindInsightException(
                    error=LineageErrors.PARAM_OPTIMIZER_ERROR,
                    message=LineageErrorMsg.PARAM_OPTIMIZER_ERROR.value)
            if optimizer:
                log.info('Obtaining initial learning rate...')
                self.initial_learning_rate = AnalyzeObject.analyze_optimizer(
                    optimizer)
                log.debug('initial_learning_rate: %s',
                          self.initial_learning_rate)
            else:
                network = run_context_args.get('train_network')
                optimizer = AnalyzeObject.get_optimizer_by_network(network)
                self.initial_learning_rate = AnalyzeObject.analyze_optimizer(
                    optimizer)
                log.debug('initial_learning_rate: %s',
                          self.initial_learning_rate)

        # get train dataset graph
        train_dataset = run_context_args.get('train_dataset')
        dataset_graph_dict = ds.serialize(train_dataset)
        dataset_graph_json_str = json.dumps(dataset_graph_dict, indent=2)
        dataset_graph_dict = json.loads(dataset_graph_json_str)
        log.info('Logging dataset graph...')
        try:
            self.lineage_summary.record_dataset_graph(
                dataset_graph=dataset_graph_dict)
        except Exception as error:
            error_msg = f'Dataset graph log error in TrainLineage begin: {error}'
            log.error(error_msg)
            raise LineageLogError(error_msg)
        log.info('Dataset graph logged successfully.')
Exemplo n.º 4
0
def validate_raise_exception(raise_exception):
    """
    Validate raise_exception.

    Args:
        raise_exception (bool): decide raise exception or not,
            if True, raise exception; else, catch exception and continue.

    Raises:
        MindInsightException: If the parameters are invalid.
    """
    if not isinstance(raise_exception, bool):
        log.error("Invalid raise_exception. It should be True or False.")
        raise MindInsightException(
            error=LineageErrors.PARAM_RAISE_EXCEPTION_ERROR,
            message=LineageErrorMsg.PARAM_RAISE_EXCEPTION_ERROR.value)
Exemplo n.º 5
0
def _get_lineage_info(lineage_type, search_condition):
    """
    Get lineage info for dataset or model.

    Args:
        lineage_type (str): Lineage type, 'dataset' or 'model'.
        search_condition (dict): Search condition.

    Returns:
        dict, lineage info.

    Raises:
        MindInsightException: If method fails to be called.
    """
    if 'lineage_type' in search_condition:
        raise ParamValueError(
            "Lineage type does not need to be assigned in a specific interface."
        )
    if lineage_type == 'dataset':
        search_condition.update({'lineage_type': 'dataset'})
    summary_base_dir = str(settings.SUMMARY_BASE_DIR)
    try:
        lineage_info = filter_summary_lineage(summary_base_dir,
                                              search_condition)

        lineages = lineage_info['object']

        summary_base_dir = os.path.realpath(summary_base_dir)
        length = len(summary_base_dir)

        for lineage in lineages:
            summary_dir = lineage['summary_dir']
            summary_dir = os.path.realpath(summary_dir)
            if summary_base_dir == summary_dir:
                relative_dir = './'
            else:
                relative_dir = os.path.join(os.curdir,
                                            summary_dir[length + 1:])
            lineage['summary_dir'] = relative_dir

    except MindInsightException as exception:
        raise MindInsightException(exception.error,
                                   exception.message,
                                   http_code=400)

    return lineage_info
Exemplo n.º 6
0
 def test_raise_exception_record_trainlineage(self, *args):
     """Test exception when error happened after recording training infos."""
     if os.path.exists(SUMMARY_DIR_3):
         shutil.rmtree(SUMMARY_DIR_3)
     args[1].side_effect = MindInsightException(error=LineageErrors.PARAM_RUN_CONTEXT_ERROR,
                                                message="RunContext error.")
     train_callback = TrainLineage(SUMMARY_DIR_3, True)
     train_callback.begin(RunContext(self.run_context))
     full_file_name = train_callback.lineage_summary.lineage_log_path
     file_size1 = os.path.getsize(full_file_name)
     train_callback.end(RunContext(self.run_context))
     file_size2 = os.path.getsize(full_file_name)
     assert file_size2 > file_size1
     eval_callback = EvalLineage(SUMMARY_DIR_3, False)
     eval_callback.end(RunContext(self.run_context))
     file_size3 = os.path.getsize(full_file_name)
     assert file_size3 == file_size2
Exemplo n.º 7
0
def validate_search_model_condition(schema, data):
    """
    Validate search model condition.

    Args:
        schema (Schema): Data schema.
        data (dict): Data to check schema.

    Raises:
        MindInsightException: If the parameters are invalid.
    """
    error = schema().validate(data)
    for error_key in error.keys():
        if error_key in SEARCH_MODEL_ERROR_MAPPING.keys():
            error_code = SEARCH_MODEL_ERROR_MAPPING.get(error_key)
            error_msg = SEARCH_MODEL_ERROR_MSG_MAPPING.get(error_key)
            log.error(error_msg)
            raise MindInsightException(error=error_code, message=error_msg)
Exemplo n.º 8
0
def validate_summary_record(summary_record):
    """
    Validate summary_record.

    Args:
        summary_record (SummaryRecord): SummaryRecord is used to record
            the summary value, and summary_record is an instance of SummaryRecord,
            see mindspore.train.summary.SummaryRecord

    Raises:
        MindInsightException: If the parameters are invalid.
    """
    if not isinstance(summary_record, SummaryRecord):
        log.error("Invalid summary_record. It should be an instance "
                  "of mindspore.train.summary.SummaryRecord.")
        raise MindInsightException(
            error=LineageErrors.PARAM_SUMMARY_RECORD_ERROR,
            message=LineageErrorMsg.PARAM_SUMMARY_RECORD_ERROR.value)
Exemplo n.º 9
0
def get_dataset_graph():
    """
    Get dataset graph.

    Returns:
        str, the dataset graph information.

    Raises:
        MindInsightException: If method fails to be called.
        ParamValueError: If summary_dir is invalid.

    Examples:
        >>> GET http://xxxx/v1/mindinsight/datasets/dataset_graph?train_id=xxx
    """

    summary_base_dir = str(settings.SUMMARY_BASE_DIR)
    summary_dir = get_train_id(request)
    if summary_dir.startswith('/'):
        validate_path(summary_dir)
    elif summary_dir.startswith('./'):
        summary_dir = os.path.join(summary_base_dir, summary_dir[2:])
        summary_dir = validate_path(summary_dir)
    else:
        raise ParamValueError("Summary dir should be absolute path or "
                              "relative path that relate to summary base dir.")
    try:
        dataset_graph = get_summary_lineage(summary_dir=summary_dir,
                                            keys=['dataset_graph'])
    except MindInsightException as exception:
        raise MindInsightException(exception.error,
                                   exception.message,
                                   http_code=400)

    if dataset_graph:
        summary_dir_result = dataset_graph.get('summary_dir')
        base_dir_len = len(summary_base_dir)
        if summary_base_dir == summary_dir_result:
            relative_dir = './'
        else:
            relative_dir = os.path.join(os.curdir,
                                        summary_dir[base_dir_len + 1:])
        dataset_graph['summary_dir'] = relative_dir

    return jsonify(dataset_graph)
Exemplo n.º 10
0
def validate_eval_run_context(schema, data):
    """
    Validate mindspore evaluation job run_context data according to schema.

    Args:
        schema (Schema): data schema.
        data (dict): data to check schema.

    Raises:
        MindInsightException: If the parameters are invalid.
    """
    errors = schema().validate(data)
    for error_key, error_msg in errors.items():
        if error_key in EVAL_RUN_CONTEXT_ERROR_MAPPING.keys():
            error_code = EVAL_RUN_CONTEXT_ERROR_MAPPING.get(error_key)
            if EVAL_RUN_CONTEXT_ERROR_MSG_MAPPING.get(error_key):
                error_msg = EVAL_RUN_CONTEXT_ERROR_MSG_MAPPING.get(error_key)
            log.error(error_msg)
            raise MindInsightException(error=error_code, message=error_msg)
Exemplo n.º 11
0
def validate_file_path(file_path, allow_empty=False):
    """
    Verify that the file_path is valid.

    Args:
        file_path (str): Input file path.
        allow_empty (bool): Whether file_path can be empty.

    Raises:
        MindInsightException: If the parameters are invalid.
    """
    try:
        if allow_empty and not file_path:
            return file_path
        return safe_normalize_path(file_path, raise_key='dataset_path', safe_prefixes=None)
    except ValidationError as error:
        log.error(str(error))
        raise MindInsightException(error=LineageErrors.PARAM_FILE_PATH_ERROR,
                                   message=str(error))
Exemplo n.º 12
0
def _get_lineage_info(search_condition):
    """
    Get lineage info for dataset or model.

    Args:
        search_condition (dict): Search condition.

    Returns:
        dict, lineage info.

    Raises:
        MindInsightException: If method fails to be called.
    """
    try:
        lineage_info = filter_summary_lineage(data_manager=DATA_MANAGER, search_condition=search_condition)

    except MindInsightException as exception:
        raise MindInsightException(exception.error, exception.message, http_code=400)

    return lineage_info
Exemplo n.º 13
0
def _get_lineage_info(search_condition):
    """
    Get lineage info for dataset or model.

    Args:
        search_condition (dict): Search condition.

    Returns:
        dict, lineage info.

    Raises:
        MindInsightException: If method fails to be called.
    """
    summary_base_dir = str(settings.SUMMARY_BASE_DIR)
    try:
        lineage_info = general_filter_summary_lineage(
            data_manager=DATA_MANAGER,
            search_condition=search_condition,
            added=True)

        lineages = lineage_info['object']

        summary_base_dir = os.path.realpath(summary_base_dir)
        length = len(summary_base_dir)

        for lineage in lineages:
            summary_dir = lineage['summary_dir']
            summary_dir = os.path.realpath(summary_dir)
            if summary_base_dir == summary_dir:
                relative_dir = './'
            else:
                relative_dir = os.path.join(os.curdir,
                                            summary_dir[length + 1:])
            lineage['summary_dir'] = relative_dir

    except MindInsightException as exception:
        raise MindInsightException(exception.error,
                                   exception.message,
                                   http_code=400)

    return lineage_info
Exemplo n.º 14
0
def validate_network(network):
    """
    Verify if the network is valid.

    Args:
        network (Cell): See mindspore.nn.Cell.

    Raises:
        LineageParamMissingError: If the network is None.
        MindInsightException: If the network is invalid.
    """
    if not network:
        error_msg = "The input network for TrainLineage should not be None."
        log.error(error_msg)
        raise LineageParamMissingError(error_msg)

    if not isinstance(network, Cell):
        log.error("Invalid network. Network should be an instance"
                  "of mindspore.nn.Cell.")
        raise MindInsightException(
            error=LineageErrors.PARAM_TRAIN_NETWORK_ERROR,
            message=LineageErrorMsg.PARAM_TRAIN_NETWORK_ERROR.value)
Exemplo n.º 15
0
def get_dataset_graph():
    """
    Get dataset graph.

    Returns:
        str, the dataset graph information.

    Raises:
        MindInsightException: If method fails to be called.
        ParamValueError: If summary_dir is invalid.

    Examples:
        >>> GET http://xxxx/v1/mindinsight/datasets/dataset_graph?train_id=xxx
    """

    summary_base_dir = str(settings.SUMMARY_BASE_DIR)
    summary_dir = get_train_id(request)
    try:
        dataset_graph = general_get_summary_lineage(DATA_MANAGER,
                                                    summary_dir=summary_dir,
                                                    keys=['dataset_graph'])
    except MindInsightException as exception:
        raise MindInsightException(exception.error,
                                   exception.message,
                                   http_code=400)

    if dataset_graph:
        summary_dir_result = dataset_graph.get('summary_dir')
        base_dir_len = len(summary_base_dir)
        if summary_base_dir == summary_dir_result:
            relative_dir = './'
        else:
            relative_dir = os.path.join(os.curdir,
                                        summary_dir[base_dir_len + 1:])
        dataset_graph['summary_dir'] = relative_dir

    return jsonify(dataset_graph)
Exemplo n.º 16
0
def get_dataset_graph():
    """
    Get dataset graph.

    Returns:
        str, the dataset graph information.

    Raises:
        MindInsightException: If method fails to be called.
        ParamValueError: If summary_dir is invalid.

    Examples:
        >>> GET http://xxxx/v1/mindinsight/datasets/dataset_graph?train_id=xxx
    """

    train_id = get_train_id(request)
    validate_train_id(train_id)
    search_condition = {
        'summary_dir': {
            'in': [train_id]
        }
    }
    result = {}
    try:
        objects = filter_summary_lineage(data_manager=DATA_MANAGER, search_condition=search_condition).get('object')
    except MindInsightException as exception:
        raise MindInsightException(exception.error, exception.message, http_code=400)

    if objects:
        lineage_obj = objects[0]
        dataset_graph = lineage_obj.get('dataset_graph')

        if dataset_graph:
            result.update({'dataset_graph': dataset_graph})
            result.update({'summary_dir': lineage_obj.get('summary_dir')})

    return jsonify(result)
Exemplo n.º 17
0
def setup_logger(sub_module, log_name, **kwargs):
    """
    Setup logger with sub module name and log file name.

    Args:
        sub_module (str): Sub module name, also for sub directory under logroot.
        log_name (str): Log name, also for log filename.
        console (bool): Whether to output log to stdout. Default: False.
        logfile (bool): Whether to output log to disk. Default: True.
        level (Enum): Log level. Default: INFO.
        formatter (str): Log format.
        propagate (bool): Whether to enable propagate feature. Default: False.
        maxBytes (int): Rotating max bytes. Default: 50M.
        backupCount (int): Rotating backup count. Default: 30.

    Returns:
        Logger, well-configured logger instance.

    Examples:
        >>> from mindinsight.utils.log import setup_logger
        >>> logger = setup_logger('datavisual', 'flask.request', level=logging.DEBUG)

        >>> from mindinsight.utils.log import get_logger
        >>> logger = get_logger('datavisual', 'flask.request')

        >>> import logging
        >>> logger = logging.getLogger('datavisual.flask.request')
    """

    if kwargs.get('sub_log_name', False):
        logger = get_logger(sub_module, kwargs['sub_log_name'])
    else:
        logger = get_logger(sub_module, log_name)
    if logger.hasHandlers():
        return logger

    level = kwargs.get('level', settings.LOG_LEVEL)
    formatter = kwargs.get('formatter', None)
    propagate = kwargs.get('propagate', False)

    logger.setLevel(level)
    logger.propagate = propagate

    if not formatter:
        formatter = settings.LOG_FORMAT

    if kwargs.get('console', False):
        console_handler = logging.StreamHandler(sys.stdout)
        console_handler.formatter = MindInsightFormatter(sub_module, formatter)
        logger.addHandler(console_handler)

    if kwargs.get('logfile', True):
        max_bytes = kwargs.get('maxBytes', settings.LOG_ROTATING_MAXBYTES)

        if not isinstance(max_bytes, int) or not max_bytes > 0:
            raise MindInsightException(GeneralErrors.PARAM_VALUE_ERROR,
                                       'maxBytes should be int type and > 0.')

        backup_count = kwargs.get('backupCount',
                                  settings.LOG_ROTATING_BACKUPCOUNT)

        if not isinstance(backup_count, int) or not backup_count > 0:
            raise MindInsightException(
                GeneralErrors.PARAM_VALUE_ERROR,
                'backupCount should be int type and > 0.')

        logfile_dir = os.path.join(settings.WORKSPACE, 'log', sub_module)

        permissions = os.R_OK | os.W_OK | os.X_OK
        mode = permissions << 6
        os.makedirs(logfile_dir, mode=mode, exist_ok=True)

        logfile_handler = MultiCompatibleRotatingFileHandler(
            filename=os.path.join(logfile_dir,
                                  '{}.{}.log'.format(log_name, settings.PORT)),
            maxBytes=max_bytes,
            backupCount=backup_count,
            encoding='utf8')
        logfile_handler.formatter = MindInsightFormatter(sub_module, formatter)
        logger.addHandler(logfile_handler)

    return logger