Exemplo n.º 1
0
 def __init__(self, record=None):
     super(BCELoss, self).__init__(record)
     self.sm_scalar = P.ScalarSummary()
     self.cast = P.Cast()
     self.record = record
     self.weight = None
     self.bce = P.BinaryCrossEntropy()
Exemplo n.º 2
0
 def __init__(self, tag1, tag2, tag3):
     super(SummaryDemoTag, self).__init__()
     self.s = P.ScalarSummary()
     self.add = P.TensorAdd()
     self.tag1 = tag1
     self.tag2 = tag2
     self.tag3 = tag3
Exemplo n.º 3
0
 def __init__(self, tag_tuple=None, scalar=1):
     super(SummaryNet, self).__init__()
     self.summary_s = P.ScalarSummary()
     self.summary_i = P.ImageSummary()
     self.summary_t = P.TensorSummary()
     self.add = P.TensorAdd()
     self.tag_tuple = tag_tuple
     self.scalar = scalar
Exemplo n.º 4
0
 def __init__(self):
     super(CrossEntropyLoss, self).__init__()
     self.sm_scalar = P.ScalarSummary()
     self.cross_entropy = P.SoftmaxCrossEntropyWithLogits()
     self.mean = P.ReduceMean()
     self.one_hot = P.OneHot()
     self.on_value = Tensor(1.0, mstype.float32)
     self.off_value = Tensor(0.0, mstype.float32)
Exemplo n.º 5
0
 def __init__(self, *args, **kwargs):
     super().__init__(*args, **kwargs)
     self._original_construct = super().construct
     self.scalar_summary = P.ScalarSummary()
     self.histogram_summary = P.HistogramSummary()
     self.weight_names = [param.name for param in self.parameters]
     self.gradient_names = [
         param.name + ".gradient" for param in self.parameters
     ]
Exemplo n.º 6
0
 def __init__(self,
              params,
              learning_rate=0.1,
              momentum=0.0,
              dampening=0.0,
              weight_decay=0.0,
              nesterov=False,
              loss_scale=1.0):
     super(SGD_, self).__init__(params, learning_rate, momentum, dampening,
                                weight_decay, nesterov, loss_scale)
     self.sm_scalar = P.ScalarSummary()
Exemplo n.º 7
0
    def __init__(self, network, optimizer, scale_update_cell=None):

        super(GNMTTrainOneStepWithLossScaleCell,
              self).__init__(auto_prefix=False)
        self.network = network
        self.network.set_grad()
        self.network.add_flags(defer_inline=True)
        self.weights = optimizer.parameters
        self.optimizer = optimizer
        self.grad = C.GradOperation(get_by_list=True, sens_param=True)
        self.reducer_flag = False
        self.all_reduce = P.AllReduce()

        self.parallel_mode = _get_parallel_mode()
        if self.parallel_mode not in ParallelMode.MODE_LIST:
            raise ValueError("Parallel mode does not support: ",
                             self.parallel_mode)
        if self.parallel_mode in [
                ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL
        ]:
            self.reducer_flag = True
        self.grad_reducer = None
        if self.reducer_flag:
            mean = _get_gradients_mean()
            degree = _get_device_num()
            self.grad_reducer = DistributedGradReducer(optimizer.parameters,
                                                       mean, degree)
        self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE)
        self.clip_gradients = ClipGradients()
        self.cast = P.Cast()
        self.alloc_status = P.NPUAllocFloatStatus()
        self.get_status = P.NPUGetFloatStatus()
        self.clear_before_grad = P.NPUClearFloatStatus()
        self.reduce_sum = P.ReduceSum(keep_dims=False)
        self.depend_parameter_use = P.ControlDepend(depend_mode=1)
        self.base = Tensor(1, mstype.float32)
        self.less_equal = P.LessEqual()
        self.hyper_map = C.HyperMap()

        self.loss_scale = None
        self.loss_scaling_manager = scale_update_cell
        if scale_update_cell:
            self.loss_scale = Parameter(Tensor(
                scale_update_cell.get_loss_scale(), dtype=mstype.float32),
                                        name="loss_scale")
        self.add_flags(has_effect=True)

        self.loss_scalar = P.ScalarSummary()
Exemplo n.º 8
0
 def __init__(self, num_class=10, channel=1):
     super(LeNet5, self).__init__()
     self.num_class = num_class
     self.conv1 = conv(channel, 6, 5)
     self.conv2 = conv(6, 16, 5)
     self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
     self.fc2 = fc_with_initialize(120, 84)
     self.fc3 = fc_with_initialize(84, self.num_class)
     self.relu = nn.ReLU()
     self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
     self.flatten = nn.Flatten()
     self.scalar_summary = P.ScalarSummary()
     self.image_summary = P.ImageSummary()
     self.histogram_summary = P.HistogramSummary()
     self.tensor_summary = P.TensorSummary()
     self.channel = Tensor(channel)
Exemplo n.º 9
0
    def __init__(self, num_class=10, num_channel=1, include_top=True):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
        self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
        self.relu = nn.ReLU()
        self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
        self.include_top = include_top
        if self.include_top:
            self.flatten = nn.Flatten()
            self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
            self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
            self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))

        self.scalar_summary = P.ScalarSummary()
        self.image_summary = P.ImageSummary()
        self.tensor_summary = P.TensorSummary()
        self.channel = Tensor(num_channel)
Exemplo n.º 10
0
 def __init__(self,
              params,
              learning_rate,
              momentum,
              weight_decay=0.0,
              loss_scale=1.0,
              use_nesterov=False):
     super(MyMomentum, self).__init__(learning_rate, params, weight_decay,
                                      loss_scale)
     if isinstance(momentum, float) and momentum < 0.0:
         raise ValueError(
             "momentum should be at least 0.0, but got momentum {}".format(
                 momentum))
     self.momentum = Parameter(Tensor(momentum, mstype.float32),
                               name="momentum")
     self.params = self.parameters
     self.use_nesterov = check_bool(use_nesterov)
     self.moments = self.params.clone(prefix="moments", init='zeros')
     self.hyper_map = C.HyperMap()
     self.opt = P.ApplyMomentum(use_nesterov=self.use_nesterov)
     self.scalar_summary = P.ScalarSummary()
     self.weight_names = [param.name for param in self.parameters]
Exemplo n.º 11
0
    def __init__(self,
                 params,
                 learning_rate=1e-3,
                 beta1=0.9,
                 beta2=0.999,
                 eps=1e-8,
                 use_locking=False,
                 use_nesterov=False,
                 weight_decay=0.0,
                 loss_scale=1.0):
        super(Adam, self).__init__(learning_rate, params, weight_decay,
                                   loss_scale)
        _check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
        validator.check_value_type("use_locking", use_locking, [bool],
                                   self.cls_name)
        validator.check_value_type("use_nesterov", use_nesterov, [bool],
                                   self.cls_name)
        validator.check_value_type("loss_scale", loss_scale, [float],
                                   self.cls_name)
        # validator.check_number_range("loss_scale", loss_scale, 1.0, float("inf"), Rel.INC_LEFT, self.cls_name)

        self.beta1 = Tensor(beta1, mstype.float32)
        self.beta2 = Tensor(beta2, mstype.float32)
        self.beta1_power = Parameter(initializer(1, [1], mstype.float32))
        self.beta2_power = Parameter(initializer(1, [1], mstype.float32))
        self.eps = eps

        self.moment1 = self.parameters.clone(prefix="moment1", init='zeros')
        self.moment2 = self.parameters.clone(prefix="moment2", init='zeros')

        self.hyper_map = C.HyperMap()
        self.opt = P.Adam(use_locking, use_nesterov)

        self.pow = P.Pow()
        self.sqrt = P.Sqrt()
        self.one = Tensor(np.array([1.0]).astype(np.float32))
        self.realdiv = P.RealDiv()

        self.lr_scalar = P.ScalarSummary()
Exemplo n.º 12
0
 def __init__(self):
     super(ScalarSummaryNet, self).__init__()
     self.summary = P.ScalarSummary()
Exemplo n.º 13
0
 def __init__(self, ):
     super(SummaryDemo, self).__init__()
     self.s = P.ScalarSummary()
     self.histogram_summary = P.HistogramSummary()
     self.add = P.TensorAdd()
Exemplo n.º 14
0
 def __init__(self,):
     super(SummaryNet, self).__init__()
     self.s = P.ScalarSummary()
     self.add = P.TensorAdd()
Exemplo n.º 15
0
    def __init__(
        self,
        num_atomtypes=100,
        dim_atomembedding=64,
        min_rbf_dis=0.05,
        max_rbf_dis=1,
        num_rbf=32,
        n_interactions=3,
        n_heads=8,
        max_cycles=10,
        activation=Swish(),
        output_dim=1,
        self_dis=None,
        rbf_sigma=None,
        distance_expansion=LogGaussianDistribution,
        cutoff=None,
        cutoff_network=SmoothCutoff,
        public_filter=True,
        coupled_interactions=False,
        trainable_gaussians=False,
        use_pondering=True,
        fixed_cycles=False,
        rescale_rbf=True,
        use_time_embedding=True,
        use_all_interactions=True,
        use_mcr=False,
        debug=False,
    ):
        super().__init__(
            num_atomtypes=num_atomtypes,
            dim_atomembedding=dim_atomembedding,
            min_rbf_dis=min_rbf_dis,
            max_rbf_dis=max_rbf_dis,
            num_rbf=num_rbf,
            output_dim=output_dim,
            rbf_sigma=rbf_sigma,
            distance_expansion=distance_expansion,
            cutoff=cutoff,
            cutoff_network=cutoff_network,
            rescale_rbf=rescale_rbf,
            use_all_interactions=use_all_interactions,
        )
        self.network_name = 'AirNet'
        self.max_distance = max_rbf_dis
        self.min_distance = min_rbf_dis

        if self_dis is None:
            self.self_dis = self.min_distance
        else:
            self.self_dis = self_dis

        self.self_dis_tensor = Tensor([self.self_dis], ms.float32)

        self.n_heads = n_heads

        if use_time_embedding:
            time_embedding = self._get_time_signal(max_cycles,
                                                   dim_atomembedding)
        else:
            time_embedding = [0 for _ in range(max_cycles)]

        if public_filter:
            inter_filter = False
            self.filter = Filter(num_rbf, dim_atomembedding, None)
        else:
            inter_filter = True
            self.filter = None

        self.n_interactions = n_interactions

        # block for computing interaction
        if coupled_interactions:
            # use the same SchNetInteraction instance (hence the same weights)
            self.interactions = nn.CellList([
                AirNetInteraction(
                    dim_atom_embed=dim_atomembedding,
                    num_rbf=num_rbf,
                    n_heads=n_heads,
                    activation=activation,
                    max_cycles=max_cycles,
                    time_embedding=time_embedding,
                    use_filter=inter_filter,
                    use_pondering=use_pondering,
                    fixed_cycles=fixed_cycles,
                )
            ] * n_interactions)
        else:
            # use one SchNetInteraction instance for each interaction
            self.interactions = nn.CellList([
                AirNetInteraction(
                    dim_atom_embed=dim_atomembedding,
                    num_rbf=num_rbf,
                    n_heads=n_heads,
                    activation=activation,
                    max_cycles=max_cycles,
                    time_embedding=time_embedding,
                    use_filter=inter_filter,
                    use_pondering=use_pondering,
                    fixed_cycles=fixed_cycles,
                ) for i in range(n_interactions)
            ])

        # readout layer
        if self.use_all_interactions and n_interactions > 1:
            if use_mcr:
                self.gather_interactions = MultipleChannelRepresentation(
                    n_interactions, dim_atomembedding, 1, activation)
            else:
                self.gather_interactions = TensorSum()
        else:
            self.gather_interactions = None

        readoutdim = int(dim_atomembedding / 2)
        self.readout = AtomwiseReadout(dim_atomembedding, self.output_dim, [
            readoutdim,
        ], activation)

        if debug:
            self.debug_fun = self._debug_fun

        self.lmax_label = []
        for i in range(n_interactions):
            self.lmax_label.append('l' + str(i) + '_cycles')

        self.fill = P.Fill()
        self.concat = P.Concat(-1)
        self.pack = P.Pack(-1)
        self.reducesum = P.ReduceSum()
        self.reducemax = P.ReduceMax()
        self.tensor_summary = P.TensorSummary()
        self.scalar_summary = P.ScalarSummary()
Exemplo n.º 16
0
 def __init__(self, value, tag_tuple):
     super(SummaryDemoValueForSet, self).__init__()
     self.s = P.ScalarSummary()
     self.add = P.TensorAdd()
     self.tag_tuple = tag_tuple
     self.v = value
Exemplo n.º 17
0
 def __init__(self, value):
     super(SummaryDemoValue, self).__init__()
     self.s = P.ScalarSummary()
     self.add = P.TensorAdd()
     self.v = value
Exemplo n.º 18
0
 def __init__(self, tag_tuple):
     super(SummaryDemoTagForSet, self).__init__()
     self.s = P.ScalarSummary()
     self.add = P.TensorAdd()
     self.tag_tuple = tag_tuple
Exemplo n.º 19
0
 def __init__(self):
     super().__init__()
     self.scalar_summary = P.ScalarSummary()
     self.image_summary = P.ImageSummary()
     self.tensor_summary = P.TensorSummary()
     self.histogram_summary = P.HistogramSummary()
Exemplo n.º 20
0
        c = x * y
        return c

    @ms_function
    def f(x, y):
        return clip_test(x, y)

    @ms_function
    def fd(x, y):
        return grad_all(clip_test)(x, y)

    print("forward: ", f(1.1, 0.1))
    print("clip_gradient:", fd(1.1, 0.1))


summary = P.ScalarSummary()


def debug_gradient(dx):
    """ debug_gradient """
    summary("dx: ", dx)
    return dx


debug = P.InsertGradientOf(debug_gradient)


def test_InsertGradientOf_3():
    """ test_InsertGradientOf_3 """
    def debug_test(x, y):
        x = debug(x)