def __init__(self, src_type=mstype.float32, dst_type=mstype.float32): super(SaturateCast, self).__init__() np_type = mstype.dtype_to_nptype(dst_type) self.tensor_min_type = float(np.finfo(np_type).min) self.tensor_max_type = float(np.finfo(np_type).max) self.min_op = P.Minimum() self.max_op = P.Maximum() self.cast = P.Cast() self.dst_type = dst_type
def __init__(self, src_type=mstype.float32, dst_type=mstype.float32): super(SaturateCast, self).__init__() np_type = mstype.dtype_to_nptype(dst_type) min_type = np.finfo(np_type).min max_type = np.finfo(np_type).max self.tensor_min_type = Tensor([min_type], dtype=src_type) self.tensor_max_type = Tensor([max_type], dtype=src_type) self.min_op = ops.Minimum() self.max_op = ops.Maximum() self.cast = ops.Cast() self.dst_type = dst_type
def __init__(self): super(ClipByValue, self).__init__() self.min = ops.Minimum() self.max = ops.Maximum()
def __init__(self, min_val=-1.0, max_val=1.0): super().__init__() self.min_val = min_val self.max_val = max_val self.max = ops.Maximum() self.min = ops.Minimum()
def __init__(self, alpha=1.0): super().__init__() self.alpha = alpha self.exp = ops.Exp() self.max = ops.Maximum() self, min = ops.Minimum()