Exemplo n.º 1
0
def test_range():
    '''
    Test for disjointed ranges.
    '''
    # Do calculations in a range
    m = minkit.Parameter('m', bounds=(0, 10))
    k = minkit.Parameter('k', -0.5, bounds=(-0.8, -0.3))
    e = minkit.Exponential('exponential', m, k)

    m.set_range('sides', [(0, 4), (6, 10)])

    helpers.check_numerical_normalization(e, range='sides')

    data = e.generate(10000)

    with helpers.fit_test(e) as test:
        with minkit.minimizer('uml',
                              e,
                              data,
                              minimizer='minuit',
                              range='sides') as minuit:
            test.result = minuit.migrad()

    # Test generation of data only in the range
    data = e.generate(10000, range='sides')

    with helpers.fit_test(e) as test:
        with minkit.minimizer('uml',
                              e,
                              data,
                              minimizer='minuit',
                              range='sides') as minuit:
            test.result = minuit.migrad()
Exemplo n.º 2
0
def test_display_pdfs():
    '''
    Test that the PDFs are displayed correctly as strings.
    '''
    # Define the model
    x = minkit.Parameter('x', bounds=(-5, +5))
    y = minkit.Parameter('y', bounds=(-5, +5))
    c = minkit.Parameter('c', 0, bounds=(-5, +5))

    k = minkit.Parameter('k', -0.1)

    sx = minkit.Parameter('sx', 2, bounds=(1, 3))
    sy = minkit.Parameter('sy', 1, bounds=(0.5, 3))

    gx = minkit.Gaussian('gx', x, c, sx)
    ex = minkit.Exponential('exp', x, k)
    gy = minkit.Gaussian('gy', y, c, sy)

    # Print a single PDF
    print(gx)

    # Print AddPDFs
    y = minkit.Parameter('y', 0.5)
    pdf = minkit.AddPDFs.two_components('pdf', gx, ex, y)
    print(pdf)

    # Print ProdPDFs
    pdf = minkit.ProdPDFs('pdf', [gx, gy])
    print(pdf)

    # Print ConvPDFs
    pdf = minkit.ConvPDFs('pdf', gx, gy)
    print(pdf)
Exemplo n.º 3
0
def test_unbinned_extended_maximum_likelihood():
    '''
    Test the "unbinned_extended_maximum_likelihood" FCN.
    '''
    m = minkit.Parameter('m', bounds=(-5, +15))

    # Create an Exponential PDF
    k = minkit.Parameter('k', -0.1, bounds=(-0.2, 0))
    e = minkit.Exponential('exponential', m, k)

    # Create a Gaussian PDF
    c = minkit.Parameter('c', 10., bounds=(8, 12))
    s = minkit.Parameter('s', 1., bounds=(0.5, 2))
    g = minkit.Gaussian('gaussian', m, c, s)

    # Add them together
    ng = minkit.Parameter('ng', 10000, bounds=(0, 100000))
    ne = minkit.Parameter('ne', 1000, bounds=(0, 100000))
    pdf = minkit.AddPDFs.two_components('model', g, e, ng, ne)

    data = pdf.generate(int(ng.value + ne.value))

    with helpers.fit_test(pdf) as test:
        with minkit.minimizer('ueml', pdf, data, minimizer='minuit') as minuit:
            test.result = minuit.migrad()

    # Add constraints
    cc = minkit.Parameter('cc', 10)
    sc = minkit.Parameter('sc', 1)
    gc = minkit.Gaussian('constraint', c, cc, sc)

    with helpers.fit_test(pdf) as test:
        with minkit.minimizer('ueml', pdf, data, minimizer='minuit', constraints=[gc]) as minuit:
            test.result = minuit.migrad()
Exemplo n.º 4
0
def test_range():
    '''
    Test the "Range" class.
    '''
    # Simple constructor
    v = [(1, 2), (5, 6)]
    r = minkit.Range(v)

    assert np.allclose(r.bounds, v)

    # Do calculations in a range
    m = minkit.Parameter('m', bounds=(0, 10))
    k = minkit.Parameter('k', -0.5, bounds=(-0.8, -0.3))
    e = minkit.Exponential('exponential', m, k)

    m.set_range('sides', [(0, 4), (6, 10)])

    assert np.allclose(e.norm(range='sides'),
                       e.numerical_normalization(range='sides'))

    data = e.generate(10000)

    with helpers.fit_test(e) as test:
        with minkit.minimizer('uml', e, data, minimizer='minuit', range='sides') as minuit:
            test.result = minuit.migrad()

    # Test generation of data only in the range
    data = e.generate(10000, range='sides')

    with helpers.fit_test(e) as test:
        with minkit.minimizer('uml', e, data, minimizer='minuit', range='sides') as minuit:
            test.result = minuit.migrad()
Exemplo n.º 5
0
def default_add_pdfs(center='c',
                     sigma='s',
                     k='k',
                     extended=False,
                     yields=None):
    '''
    Create a combination of a Gaussian and an exponential.
    '''
    # Simple fit to a Gaussian
    x = minkit.Parameter('x', bounds=(0, 20))  # bounds to generate data later
    c = minkit.Parameter(center, 10, bounds=(8, 12))
    s = minkit.Parameter(sigma, 2, bounds=(1, 3))
    g = minkit.Gaussian('gaussian', x, c, s)

    # Test for a composed PDF
    k = minkit.Parameter(k, -0.1, bounds=(-1, 0))
    e = minkit.Exponential('exponential', x, k)

    if extended:
        ng_name, ne_name = tuple(yields if yields is not None else ('ng',
                                                                    'ne'))
        ng = minkit.Parameter(ng_name, 9000, bounds=(0, 10000))
        ne = minkit.Parameter(ne_name, 1000, bounds=(0, 10000))
        return minkit.AddPDFs.two_components('pdf', g, e, ng, ne)
    else:
        y_name = yields if yields is not None else 'y'
        y = minkit.Parameter(y_name, 0.5, bounds=(0, 1))
        return minkit.AddPDFs.two_components('pdf', g, e, y)
Exemplo n.º 6
0
def test_addpdfs(tmpdir):
    '''
    Test the "AddPDFs" class.
    '''
    m = minkit.Parameter('m', bounds=(-5, +5))

    # Create an Exponential PDF
    k = minkit.Parameter('k', -0.05, bounds=(-0.1, 0))
    e = minkit.Exponential('exponential', m, k)

    # Create a Gaussian PDF
    c = minkit.Parameter('c', 0., bounds=(-2, +2))
    s = minkit.Parameter('s', 1., bounds=(-3, +3))
    g = minkit.Gaussian('gaussian', m, c, s)

    # Add them together
    g2e = minkit.Parameter('g2e', 0.5, bounds=(0, 1))
    pdf = minkit.AddPDFs.two_components('model', g, e, g2e)

    assert len(pdf.all_args) == (1 + len(g.args) + len(e.args))

    gdata = helpers.rndm_gen.normal(c.value, s.value, 100000)
    edata = helpers.rndm_gen.exponential(-1. / k.value, 100000)
    data = np.concatenate([gdata, edata])

    values, edges = np.histogram(data, bins=100, range=m.bounds)

    centers = minkit.DataSet.from_ndarray(0.5 * (edges[1:] + edges[:-1]), m)

    pdf_values = minkit.utils.core.scaled_pdf_values(pdf, centers, values,
                                                     edges)

    assert np.allclose(np.sum(pdf_values), np.sum(values))

    # Test consteness of the PDFs
    k.constant = True
    assert e.constant and not pdf.constant
    g2e.constant = True
    assert not pdf.constant
    for p in pdf.all_args:
        p.constant = True
    assert pdf.constant

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)

    # Check copying the PDF
    pdf.copy()
Exemplo n.º 7
0
def test_sweights():
    '''
    Test the "sweights" function.
    '''
    m = minkit.Parameter('m', bounds=(0, +20))

    # Create an Exponential PDF
    k = minkit.Parameter('k', -0.1, bounds=(-0.2, 0))
    e = minkit.Exponential('exponential', m, k)

    # Create a Gaussian PDF
    c = minkit.Parameter('c', 10., bounds=(0, 20))
    s = minkit.Parameter('s', 1., bounds=(0.1, 2))
    g = minkit.Gaussian('gaussian', m, c, s)

    # Add them together
    ng = minkit.Parameter('ng', 10000, bounds=(0, 100000))
    ne = minkit.Parameter('ne', 1000, bounds=(0, 100000))
    pdf = minkit.AddPDFs.two_components('model', g, e, ng, ne)

    data = pdf.generate(int(ng.value + ne.value))

    with minkit.minimizer('ueml', pdf, data, minimizer='minuit') as minuit:
        r = minuit.migrad()
        print(r)

    # Now we fix the parameters that are not yields, and we re-run the fit
    for p in (e, g):
        for a in p.args:
            a.constant = True

    with minkit.minimizer('ueml', pdf, data, minimizer='minuit') as minuit:
        r = minuit.migrad()
        print(r)

    result = minkit.minuit_to_registry(r.params)

    # Calculate the s-weights (first comes from the Gaussian, second from the exponential)
    sweights, V = minkit.sweights(pdf.pdfs,
                                  result.reduce(['ng', 'ne']),
                                  data,
                                  return_covariance=True)

    # The s-weights are normalized
    assert np.allclose(minkit.core.aop.sum(sweights[0]),
                       result.get(ng.name).value)
    assert np.allclose(minkit.core.aop.sum(sweights[1]),
                       result.get(ne.name).value)

    # The uncertainty on the yields is reflected in the s-weights
    assert np.allclose(minkit.core.aop.sum(sweights[0]**2), V[0][0])
    assert np.allclose(minkit.core.aop.sum(sweights[1]**2), V[1][1])
Exemplo n.º 8
0
def test_exponential():
    '''
    Test the "Exponential" PDF
    '''
    m = minkit.Parameter('m', bounds=(-5, +5))
    k = minkit.Parameter('k', -0.05, bounds=(-0.1, 0))
    e = minkit.Exponential('exponential', m, k)

    data = np.random.exponential(-1. / k.value, 100000)

    compare_with_numpy(e, data, m)

    assert np.allclose(e.numerical_normalization(), e.norm())
Exemplo n.º 9
0
def test_exponential():
    '''
    Test the "Exponential" PDF
    '''
    m = minkit.Parameter('m', bounds=(-5, +5))
    k = minkit.Parameter('k', -0.05, bounds=(-0.1, 0))
    e = minkit.Exponential('exponential', m, k)

    data = helpers.rndm_gen.exponential(-1. / k.value, 100000)

    compare_with_numpy(e, data, m)

    helpers.check_numerical_normalization(e)
Exemplo n.º 10
0
def test_interppdf(tmpdir):
    '''
    Test the InterpPDF class.
    '''
    m = minkit.Parameter('m', bounds=(-3, +3))
    centers = np.linspace(*m.bounds, 100)
    values = np.exp(-0.5 * centers**2)

    ip = minkit.InterpPDF.from_ndarray('ip', m, centers, values)

    ip.max()  # check that we can calculate the maximum

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'ip.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(ip), fi)

    with open(os.path.join(tmpdir, 'ip.json'), 'rt') as fi:
        p = minkit.pdf_from_json(json.load(fi))

    check_pdfs(p, ip)

    # Check copying the PDF
    ip.copy()

    # Combine the PDF with another
    k = minkit.Parameter('k', -0.1, bounds=(-1, +1))
    e = minkit.Exponential('exp', m, k)

    y = minkit.Parameter('y', 0.5, bounds=(0, 1))

    pdf = minkit.AddPDFs.two_components('pdf', ip, e, y)

    data = pdf.generate(10000)

    with fit_test(pdf) as test:
        with minkit.minimizer('uml', pdf, data,
                              minimizer='minuit') as minimizer:
            test.result = minimizer.migrad()

    bdata = data.make_binned(20)

    with fit_test(pdf) as test:
        with minkit.minimizer('bml', pdf, bdata,
                              minimizer='minuit') as minimizer:
            test.result = minimizer.migrad()

    # Test the construction from a binned data set
    minkit.InterpPDF.from_binned_dataset('pdf', bdata)
Exemplo n.º 11
0
def test_binned_chisquare():
    '''
    Test the "binned_chisquare" FCN.
    '''
    # Single PDF
    m = minkit.Parameter('m', bounds=(0, 20))
    c = minkit.Parameter('c', 10., bounds=(8, 12))
    # all bins must be highly populated
    s = minkit.Parameter('s', 3., bounds=(2, 7))
    g = minkit.Gaussian('gaussian', m, c, s)

    data = g.generate(10000)

    values, edges = np.histogram(
        data[m.name].as_ndarray(), range=m.bounds, bins=100)

    data = minkit.BinnedDataSet.from_ndarray(edges, m, values)

    with helpers.fit_test(g) as test:
        with minkit.minimizer('chi2', g, data) as minimizer:
            test.result = minimizer.migrad()

    # Many PDfs
    k = minkit.Parameter('k', -0.1, bounds=(-1, 0))
    e = minkit.Exponential('exponential', m, k)

    ng = minkit.Parameter('ng', 10000, bounds=(0, 100000))
    ne = minkit.Parameter('ne', 1000, bounds=(0, 100000))

    pdf = minkit.AddPDFs.two_components('pdf', g, e, ng, ne)

    data = pdf.generate(int(ng.value + ne.value))

    values, edges = np.histogram(
        data[m.name].as_ndarray(), range=m.bounds, bins=100)

    data = minkit.BinnedDataSet.from_ndarray(edges, m, values)

    with helpers.fit_test(pdf) as test:
        with minkit.minimizer('chi2', pdf, data) as minimizer:
            test.result = minimizer.migrad()
Exemplo n.º 12
0
def intermediate():
    '''
    Intermediate model, with a Crystal-ball and an exponential.
    '''
    # Signal
    m = minkit.Parameter('m', bounds=(5, 25))
    c = minkit.Parameter('c', 15, bounds=(10, 20))
    s = minkit.Parameter('s', 1, bounds=(0.1, 5))
    a = minkit.Parameter('a', 1.5, bounds=(0.1, 5))
    n = minkit.Parameter('n', 10, bounds=(1, 30))
    sig = minkit.CrystalBall('sig', m, c, s, a, n)

    # Background
    k = minkit.Parameter('k', -1e-6, bounds=(-1e-4, 0))
    bkg = minkit.Exponential('bkg', m, k)

    # Model
    y = minkit.Parameter('y', 0.5, bounds=(0, 1))
    pdf = minkit.AddPDFs.two_components('pdf', sig, bkg, y)

    return pdf
Exemplo n.º 13
0
def test_constpdf(tmpdir):
    '''
    Test a fit with a constant PDF.
    '''
    m = minkit.Parameter('m', bounds=(0, 10))

    # Create an Exponential PDF
    k = minkit.Parameter('k', -0.05)
    e = minkit.Exponential('exponential', m, k)

    # Create a Gaussian PDF
    c = minkit.Parameter('c', 5., bounds=(0, 10))
    s = minkit.Parameter('s', 1., bounds=(0.5, 3))
    g = minkit.Gaussian('gaussian', m, c, s)

    # Add them together
    g2e = minkit.Parameter('g2e', 0.5, bounds=(0, 1))
    pdf = minkit.AddPDFs.two_components('model', g, e, g2e)

    # Check for "get_values" and "set_values"
    p = pdf.norm()
    pdf.set_values(**pdf.get_values())
    assert np.allclose(p, pdf.norm())

    # Test a simple fit
    data = pdf.generate(10000)

    with fit_test(pdf) as test:
        with minkit.minimizer('uml', pdf, data, minimizer='minuit') as minuit:
            test.result = minuit.migrad()

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)
Exemplo n.º 14
0
def test_binned_maximum_likelihood():
    '''
    Tets the "binned_maximum_likelihood" FCN.
    '''
    # Simple fit to a Gaussian
    m = minkit.Parameter('m', bounds=(5, 15))
    c = minkit.Parameter('c', 10., bounds=(8, 12))
    s = minkit.Parameter('s', 1., bounds=(0.5, 2))
    g = minkit.Gaussian('gaussian', m, c, s)

    values, edges = np.histogram(np.random.normal(c.value, s.value, 10000),
                                 bins=100)

    data = minkit.BinnedDataSet.from_array(edges, m, values)

    with helpers.fit_test(g) as test:
        with minkit.minimizer('bml', g, data, minimizer='minuit') as minuit:
            test.result = minuit.migrad()

    # Add constraints
    cc = minkit.Parameter('cc', 10)
    sc = minkit.Parameter('sc', 0.1)
    gc = minkit.Gaussian('constraint', c, cc, sc)

    with helpers.fit_test(g) as test:
        with minkit.minimizer('bml',
                              g,
                              data,
                              minimizer='minuit',
                              constraints=[gc]) as minuit:
            test.result = minuit.migrad()

    # Test for a composed PDF
    k = minkit.Parameter('k', -0.1, bounds=(-1, 0))
    e = minkit.Exponential('e', m, k)

    y = minkit.Parameter('y', 0.5, bounds=(0, 1))

    pdf = minkit.AddPDFs.two_components('pdf', g, e, y)

    data = pdf.generate(10000)

    values, edges = np.histogram(minkit.as_ndarray(data[m.name]), bins=100)

    data = minkit.BinnedDataSet.from_array(edges, m, values)

    with helpers.fit_test(pdf) as test:
        with minkit.minimizer('bml', pdf, data) as minimizer:
            test.result = minimizer.migrad()

    # Test for a PDF with no "evaluate_binned" function defined
    m = minkit.Parameter('m', bounds=(0, 10))
    a = minkit.Parameter('a', 0)
    theta = minkit.Parameter('theta', 2, bounds=(0, 3))
    alpha = minkit.Parameter('alpha', 0.5)
    beta = minkit.Parameter('beta', 2)
    pdf = minkit.Amoroso('amoroso', m, a, theta, alpha, beta)

    data = pdf.generate(1000)

    values, edges = np.histogram(minkit.as_ndarray(data[m.name]),
                                 range=m.bounds,
                                 bins=100)

    data = minkit.BinnedDataSet.from_array(edges, m, values)

    with helpers.fit_test(pdf) as test:
        with minkit.minimizer('bml', pdf, data) as minimizer:
            test.result = minimizer.migrad()