Exemplo n.º 1
0
def train(net_shapes, net_params, optimizer, utility, pool):
    # pass seed instead whole noise matrix to parallel will save your time
    noise_seed = np.random.randint(
        0, 2**32 - 1, size=N_KID,
        dtype=np.uint32)  #.repeat(2)    # mirrored sampling
    noise_seed = np.concatenate([noise_seed, noise_seed
                                 ]).reshape([2, N_KID]).T.reshape([N_KID * 2])

    # serially train with GPU
    rewards = []
    for k_id in range(N_KID * 2):
        reward = get_reward(net_shapes, net_params, env, CONFIG['ep_max_step'],
                            CONFIG['continuous_a'], [noise_seed[k_id], k_id])
    rewards = np.array(rewards)
    kids_rank = np.argsort(rewards)[::-1]  # rank kid id by reward

    cumulative_update = np.zeros_like(net_params)  # initialize update values
    for ui, k_id in enumerate(kids_rank):
        np.random.seed(noise_seed[k_id])  # reconstruct noise using seed
        cumulative_update += utility[ui] * sign(k_id) * np.random.randn(
            net_params.size)

    gradients = optimizer.get_gradients(cumulative_update /
                                        (2 * N_KID * SIGMA))
    return net_params + gradients, rewards
    def eigenVectorAndEigenValue(self, M, k):
        val, vec = np.linalg.eig(M)
        sorted_indices = np.argsort(val)
        topk_evecs = vec[:, sorted_indices[:k:1]]
        topN = 0.0
        counter = 0
        for v in sorted_indices:
            if counter == k: break
            topN = topN + val[v]
            counter += 1

        return [topN, topk_evecs]
Exemplo n.º 3
0
def test_fromnumeric():
    # Functions
    # 'alen', 'all', 'alltrue', 'amax', 'amin', 'any', 'argmax',
    # 'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip',
    # 'compress', 'cumprod', 'cumproduct', 'cumsum', 'diagonal', 'mean',
    # 'ndim', 'nonzero', 'partition', 'prod', 'product', 'ptp', 'put',
    # 'rank', 'ravel', 'repeat', 'reshape', 'resize', 'round_',
    # 'searchsorted', 'shape', 'size', 'sometrue', 'sort', 'squeeze',
    # 'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var',
    a = [4, 3, 5, 7, 6, 8]
    indices = [0, 1, 4]
    np.take(a, indices)
    a = np.array(a)
    # a[indices]
    np.take(a, [[0, 1], [2, 3]])
    a = np.zeros((10, 2))
    b = a.T
    a = np.arange(6).reshape((3, 2))
    np.reshape(a, (2, 3))  # C-like index ordering
    np.reshape(np.ravel(a), (2, 3))  # equivalent to C ravel then C reshape
    np.reshape(a, (2, 3), order='F')  # Fortran-like index ordering
    np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
    a = np.array([[1, 2, 3], [4, 5, 6]])
    np.reshape(a, 6)
    np.reshape(a, 6, order='F')
    np.reshape(a, (3, -1))  # the unspecified value is inferred to be 2
    choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23],
               [30, 31, 32, 33]]
    np.choose([2, 3, 1, 0], choices)
    np.choose([2, 4, 1, 0], choices, mode='clip')  # 4 goes to 3 (4-1)
    np.choose([2, 4, 1, 0], choices, mode='wrap')  # 4 goes to (4 mod 4)
    a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
    choices = [-10, 10]
    np.choose(a, choices)
    a = np.array([0, 1]).reshape((2, 1, 1))
    c1 = np.array([1, 2, 3]).reshape((1, 3, 1))
    c2 = np.array([-1, -2, -3, -4, -5]).reshape((1, 1, 5))
    np.choose(a, (c1, c2))  # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
    np.repeat(3, 4)
    x = np.array([[1, 2], [3, 4]])
    np.repeat(x, 2)
    np.repeat(x, 3, axis=1)
    np.repeat(x, [1, 2], axis=0)
    a = np.arange(5)
    np.put(a, [0, 2], [-44, -55])
    a = np.arange(5)
    np.put(a, 22, -5, mode='clip')
    x = np.array([[1, 2, 3]])
    np.swapaxes(x, 0, 1)
    x = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])
    np.swapaxes(x, 0, 2)
    x = np.arange(4).reshape((2, 2))
    np.transpose(x)
    x = np.ones((1, 2, 3))
    np.transpose(x, (1, 0, 2)).shape
    a = np.array([3, 4, 2, 1])
    np.partition(a, 3)
    np.partition(a, (1, 3))
    x = np.array([3, 4, 2, 1])
    x[np.argpartition(x, 3)]
    x[np.argpartition(x, (1, 3))]
    x = [3, 4, 2, 1]
    np.array(x)[np.argpartition(x, 3)]
    a = np.array([[1, 4], [3, 1]])
    np.sort(a)  # sort along the last axis
    np.sort(a, axis=None)  # sort the flattened array
    np.sort(a, axis=0)  # sort along the first axis
    dtype = [('name', 'S10'), ('height', float), ('age', int)]
    values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38), ('Galahad', 1.7, 38)]
    a = np.array(values, dtype=dtype)  # create a structured array
    np.sort(a, order='height')  # doctest: +SKIP
    np.sort(a, order=['age', 'height'])  # doctest: +SKIP
    x = np.array([3, 1, 2])
    np.argsort(x)
    x = np.array([[0, 3], [2, 2]])
    np.argsort(x, axis=0)
    np.argsort(x, axis=1)
    x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    np.argsort(x, order=('x', 'y'))
    np.argsort(x, order=('y', 'x'))
    a = np.arange(6).reshape(2, 3)
    np.argmax(a)
    np.argmax(a, axis=0)
    np.argmax(a, axis=1)
    b = np.arange(6)
    b[1] = 5
    np.argmax(b)  # Only the first occurrence is returned.
    a = np.arange(6).reshape(2, 3)
    np.argmin(a)
    np.argmin(a, axis=0)
    np.argmin(a, axis=1)
    b = np.arange(6)
    b[4] = 0
    np.argmin(b)  # Only the first occurrence is returned.
    np.searchsorted([1, 2, 3, 4, 5], 3)
    np.searchsorted([1, 2, 3, 4, 5], 3, side='right')
    np.searchsorted([1, 2, 3, 4, 5], [-10, 10, 2, 3])
    a = np.array([[0, 1], [2, 3]])
    np.resize(a, (2, 3))
    np.resize(a, (1, 4))
    np.resize(a, (2, 4))
    x = np.array([[[0], [1], [2]]])
    x.shape
    np.squeeze(x).shape
    np.squeeze(x, axis=(2, )).shape
    a = np.arange(4).reshape(2, 2)
    a = np.arange(8).reshape(2, 2, 2)
    a
    a[:, :, 0]  # main diagonal is [0 6]
    a[:, :, 1]  # main diagonal is [1 7]
    np.trace(np.eye(3))
    a = np.arange(8).reshape((2, 2, 2))
    np.trace(a)
    a = np.arange(24).reshape((2, 2, 2, 3))
    np.trace(a).shape
    x = np.array([[1, 2, 3], [4, 5, 6]])
    np.ravel(x)
    x.reshape(-1)
    np.ravel(x, order='F')
    np.ravel(x.T)
    np.ravel(x.T, order='A')
    a = np.arange(3)[::-1]
    a
    # a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
    x = np.eye(3)
    np.nonzero(x)
    x[np.nonzero(x)]
    np.transpose(np.nonzero(x))
    a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    a > 3
    np.nonzero(a > 3)
    np.shape(np.eye(3))
    np.shape([[1, 2]])
    np.shape([0])
    np.shape(0)
    a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
    np.shape(a)
    a.shape
    a = np.array([[1, 2], [3, 4], [5, 6]])
    np.compress([0, 1], a, axis=0)
    np.compress([False, True, True], a, axis=0)
    np.compress([False, True], a, axis=1)
    np.compress([False, True], a)
    a = np.arange(10)
    np.clip(a, 1, 8)
    np.clip(a, 3, 6, out=a)
    a = np.arange(10)
    np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
    np.sum([])
    np.sum([0.5, 1.5])
    np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
    np.sum([[0, 1], [0, 5]])
    np.sum([[0, 1], [0, 5]], axis=0)
    np.sum([[0, 1], [0, 5]], axis=1)
    # np.ones(128, dtype=np.int8).sum(dtype=np.int8)
    # np.any([[True, False], [True, True]])
    # np.any([[True, False], [False, False]], axis=0)
    # np.any([-1, 0, 5])
    # np.any(np.nan)
    # np.all([[True,False],[True,True]])
    # np.all([[True,False],[True,True]], axis=0)
    # np.all([-1, 4, 5])
    # np.all([1.0, np.nan])
    a = np.array([[1, 2, 3], [4, 5, 6]])
    np.cumsum(a)
    np.cumsum(a, dtype=float)  # specifies type of output value(s)
    np.cumsum(a, axis=0)  # sum over rows for each of the 3 columns
    np.cumsum(a, axis=1)  # sum over columns for each of the 2 rows
    x = np.arange(4).reshape((2, 2))
    np.ptp(x, axis=0)
    np.ptp(x, axis=1)
    a = np.arange(4).reshape((2, 2))
    np.amax(a)  # Maximum of the flattened array
    np.amax(a, axis=0)  # Maxima along the first axis
    np.amax(a, axis=1)  # Maxima along the second axis
    b = np.arange(5, dtype=np.float)
    # b[2] = np.NaN
    np.amax(b)
    np.nanmax(b)
    a = np.arange(4).reshape((2, 2))
    np.amin(a)  # Minimum of the flattened array
    np.amin(a, axis=0)  # Minima along the first axis
    np.amin(a, axis=1)  # Minima along the second axis
    b = np.arange(5, dtype=np.float)
    # b[2] = np.NaN
    np.amin(b)
    np.nanmin(b)
    a = np.zeros((7, 4, 5))
    a.shape[0]
    np.alen(a)
    x = np.array([536870910, 536870910, 536870910, 536870910])
    np.prod(x)  #random
    np.prod([])
    np.prod([1., 2.])
    np.prod([[1., 2.], [3., 4.]])
    np.prod([[1., 2.], [3., 4.]], axis=1)
    x = np.array([1, 2, 3], dtype=np.uint8)
    # np.prod(x).dtype == np.uint
    x = np.array([1, 2, 3], dtype=np.int8)
    # np.prod(x).dtype == np.int
    a = np.array([1, 2, 3])
    np.cumprod(a)  # intermediate results 1, 1*2
    a = np.array([[1, 2, 3], [4, 5, 6]])
    np.cumprod(a, dtype=float)  # specify type of output
    np.cumprod(a, axis=0)
    np.cumprod(a, axis=1)
    np.ndim([[1, 2, 3], [4, 5, 6]])
    np.ndim(np.array([[1, 2, 3], [4, 5, 6]]))
    np.ndim(1)
    a = np.array([[1, 2, 3], [4, 5, 6]])
    np.size(a)
    np.size(a, 1)
    np.size(a, 0)
    np.around([0.37, 1.64])
    np.around([0.37, 1.64], decimals=1)
    np.around([.5, 1.5, 2.5, 3.5, 4.5])  # rounds to nearest even value
    np.around([1, 2, 3, 11], decimals=1)  # ndarray of ints is returned
    np.around([1, 2, 3, 11], decimals=-1)
    a = np.array([[1, 2], [3, 4]])
    np.mean(a)
    np.mean(a, axis=0)
    np.mean(a, axis=1)
    a = np.zeros((2, 512 * 512), dtype=np.float32)
    a[0, :] = 1.0
    a[1, :] = 0.1
    np.mean(a)
    np.mean(a, dtype=np.float64)
    a = np.array([[1, 2], [3, 4]])
    np.std(a)
    np.std(a, axis=0)
    np.std(a, axis=1)
    a = np.zeros((2, 512 * 512), dtype=np.float32)
    a[0, :] = 1.0
    a[1, :] = 0.1
    np.std(a)
    np.std(a, dtype=np.float64)
    a = np.array([[1, 2], [3, 4]])
    np.var(a)
    np.var(a, axis=0)
    np.var(a, axis=1)
    a = np.zeros((2, 512 * 512), dtype=np.float32)
    a[0, :] = 1.0
    a[1, :] = 0.1
    np.var(a)
    np.var(a, dtype=np.float64)
Exemplo n.º 4
0
def test_fromnumeric():
    # Functions
    # 'alen', 'all', 'alltrue', 'amax', 'amin', 'any', 'argmax',
    # 'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip',
    # 'compress', 'cumprod', 'cumproduct', 'cumsum', 'diagonal', 'mean',
    # 'ndim', 'nonzero', 'partition', 'prod', 'product', 'ptp', 'put',
    # 'rank', 'ravel', 'repeat', 'reshape', 'resize', 'round_',
    # 'searchsorted', 'shape', 'size', 'sometrue', 'sort', 'squeeze',
    # 'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var',
    a = [4, 3, 5, 7, 6, 8]
    indices = [0, 1, 4]
    np.take(a, indices)
    a = np.array(a)
    # a[indices]
    np.take(a, [[0, 1], [2, 3]])
    a = np.zeros((10, 2))
    b = a.T
    a = np.arange(6).reshape((3, 2))
    np.reshape(a, (2, 3)) # C-like index ordering
    np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape
    np.reshape(a, (2, 3), order='F') # Fortran-like index ordering
    np.reshape(np.ravel(a, order='F'), (2, 3), order='F')
    a = np.array([[1,2,3], [4,5,6]])
    np.reshape(a, 6)
    np.reshape(a, 6, order='F')
    np.reshape(a, (3,-1))       # the unspecified value is inferred to be 2
    choices = [[0, 1, 2, 3], [10, 11, 12, 13],
               [20, 21, 22, 23], [30, 31, 32, 33]]
    np.choose([2, 3, 1, 0], choices)
    np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)
    np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)
    a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]
    choices = [-10, 10]
    np.choose(a, choices)
    a = np.array([0, 1]).reshape((2,1,1))
    c1 = np.array([1, 2, 3]).reshape((1,3,1))
    c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))
    np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2
    np.repeat(3, 4)
    x = np.array([[1,2],[3,4]])
    np.repeat(x, 2)
    np.repeat(x, 3, axis=1)
    np.repeat(x, [1, 2], axis=0)
    a = np.arange(5)
    np.put(a, [0, 2], [-44, -55])
    a = np.arange(5)
    np.put(a, 22, -5, mode='clip')
    x = np.array([[1,2,3]])
    np.swapaxes(x,0,1)
    x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])
    np.swapaxes(x,0,2)
    x = np.arange(4).reshape((2,2))
    np.transpose(x)
    x = np.ones((1, 2, 3))
    np.transpose(x, (1, 0, 2)).shape
    a = np.array([3, 4, 2, 1])
    np.partition(a, 3)
    np.partition(a, (1, 3))
    x = np.array([3, 4, 2, 1])
    x[np.argpartition(x, 3)]
    x[np.argpartition(x, (1, 3))]
    x = [3, 4, 2, 1]
    np.array(x)[np.argpartition(x, 3)]
    a = np.array([[1,4],[3,1]])
    np.sort(a)                # sort along the last axis
    np.sort(a, axis=None)     # sort the flattened array
    np.sort(a, axis=0)        # sort along the first axis
    dtype = [('name', 'S10'), ('height', float), ('age', int)]
    values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),
              ('Galahad', 1.7, 38)]
    a = np.array(values, dtype=dtype)       # create a structured array
    np.sort(a, order='height')                        # doctest: +SKIP
    np.sort(a, order=['age', 'height'])               # doctest: +SKIP
    x = np.array([3, 1, 2])
    np.argsort(x)
    x = np.array([[0, 3], [2, 2]])
    np.argsort(x, axis=0)
    np.argsort(x, axis=1)
    x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    np.argsort(x, order=('x','y'))
    np.argsort(x, order=('y','x'))
    a = np.arange(6).reshape(2,3)
    np.argmax(a)
    np.argmax(a, axis=0)
    np.argmax(a, axis=1)
    b = np.arange(6)
    b[1] = 5
    np.argmax(b) # Only the first occurrence is returned.
    a = np.arange(6).reshape(2,3)
    np.argmin(a)
    np.argmin(a, axis=0)
    np.argmin(a, axis=1)
    b = np.arange(6)
    b[4] = 0
    np.argmin(b) # Only the first occurrence is returned.
    np.searchsorted([1,2,3,4,5], 3)
    np.searchsorted([1,2,3,4,5], 3, side='right')
    np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])
    a=np.array([[0,1],[2,3]])
    np.resize(a,(2,3))
    np.resize(a,(1,4))
    np.resize(a,(2,4))
    x = np.array([[[0], [1], [2]]])
    x.shape
    np.squeeze(x).shape
    np.squeeze(x, axis=(2,)).shape
    a = np.arange(4).reshape(2,2)
    a = np.arange(8).reshape(2,2,2); a
    a[:,:,0] # main diagonal is [0 6]
    a[:,:,1] # main diagonal is [1 7]
    np.trace(np.eye(3))
    a = np.arange(8).reshape((2,2,2))
    np.trace(a)
    a = np.arange(24).reshape((2,2,2,3))
    np.trace(a).shape
    x = np.array([[1, 2, 3], [4, 5, 6]])
    np.ravel(x)
    x.reshape(-1)
    np.ravel(x, order='F')
    np.ravel(x.T)
    np.ravel(x.T, order='A')
    a = np.arange(3)[::-1]; a
    # a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a
    x = np.eye(3)
    np.nonzero(x)
    x[np.nonzero(x)]
    np.transpose(np.nonzero(x))
    a = np.array([[1,2,3],[4,5,6],[7,8,9]])
    a > 3
    np.nonzero(a > 3)
    np.shape(np.eye(3))
    np.shape([[1, 2]])
    np.shape([0])
    np.shape(0)
    a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
    np.shape(a)
    a.shape
    a = np.array([[1, 2], [3, 4], [5, 6]])
    np.compress([0, 1], a, axis=0)
    np.compress([False, True, True], a, axis=0)
    np.compress([False, True], a, axis=1)
    np.compress([False, True], a)
    a = np.arange(10)
    np.clip(a, 1, 8)
    np.clip(a, 3, 6, out=a)
    a = np.arange(10)
    np.clip(a, [3,4,1,1,1,4,4,4,4,4], 8)
    np.sum([])
    np.sum([0.5, 1.5])
    np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)
    np.sum([[0, 1], [0, 5]])
    np.sum([[0, 1], [0, 5]], axis=0)
    np.sum([[0, 1], [0, 5]], axis=1)
    # np.ones(128, dtype=np.int8).sum(dtype=np.int8)
    # np.any([[True, False], [True, True]])
    # np.any([[True, False], [False, False]], axis=0)
    # np.any([-1, 0, 5])
    # np.any(np.nan)
    # np.all([[True,False],[True,True]])
    # np.all([[True,False],[True,True]], axis=0)
    # np.all([-1, 4, 5])
    # np.all([1.0, np.nan])
    a = np.array([[1,2,3], [4,5,6]])
    np.cumsum(a)
    np.cumsum(a, dtype=float)     # specifies type of output value(s)
    np.cumsum(a,axis=0)      # sum over rows for each of the 3 columns
    np.cumsum(a,axis=1)      # sum over columns for each of the 2 rows
    x = np.arange(4).reshape((2,2))
    np.ptp(x, axis=0)
    np.ptp(x, axis=1)
    a = np.arange(4).reshape((2,2))
    np.amax(a)           # Maximum of the flattened array
    np.amax(a, axis=0)   # Maxima along the first axis
    np.amax(a, axis=1)   # Maxima along the second axis
    b = np.arange(5, dtype=np.float)
    # b[2] = np.NaN
    np.amax(b)
    np.nanmax(b)
    a = np.arange(4).reshape((2,2))
    np.amin(a)           # Minimum of the flattened array
    np.amin(a, axis=0)   # Minima along the first axis
    np.amin(a, axis=1)   # Minima along the second axis
    b = np.arange(5, dtype=np.float)
    # b[2] = np.NaN
    np.amin(b)
    np.nanmin(b)
    a = np.zeros((7,4,5))
    a.shape[0]
    np.alen(a)
    x = np.array([536870910, 536870910, 536870910, 536870910])
    np.prod(x) #random
    np.prod([])
    np.prod([1.,2.])
    np.prod([[1.,2.],[3.,4.]])
    np.prod([[1.,2.],[3.,4.]], axis=1)
    x = np.array([1, 2, 3], dtype=np.uint8)
    # np.prod(x).dtype == np.uint
    x = np.array([1, 2, 3], dtype=np.int8)
    # np.prod(x).dtype == np.int
    a = np.array([1,2,3])
    np.cumprod(a) # intermediate results 1, 1*2
    a = np.array([[1, 2, 3], [4, 5, 6]])
    np.cumprod(a, dtype=float) # specify type of output
    np.cumprod(a, axis=0)
    np.cumprod(a,axis=1)
    np.ndim([[1,2,3],[4,5,6]])
    np.ndim(np.array([[1,2,3],[4,5,6]]))
    np.ndim(1)
    a = np.array([[1,2,3],[4,5,6]])
    np.size(a)
    np.size(a,1)
    np.size(a,0)
    np.around([0.37, 1.64])
    np.around([0.37, 1.64], decimals=1)
    np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value
    np.around([1,2,3,11], decimals=1) # ndarray of ints is returned
    np.around([1,2,3,11], decimals=-1)
    a = np.array([[1, 2], [3, 4]])
    np.mean(a)
    np.mean(a, axis=0)
    np.mean(a, axis=1)
    a = np.zeros((2, 512*512), dtype=np.float32)
    a[0, :] = 1.0
    a[1, :] = 0.1
    np.mean(a)
    np.mean(a, dtype=np.float64)
    a = np.array([[1, 2], [3, 4]])
    np.std(a)
    np.std(a, axis=0)
    np.std(a, axis=1)
    a = np.zeros((2, 512*512), dtype=np.float32)
    a[0, :] = 1.0
    a[1, :] = 0.1
    np.std(a)
    np.std(a, dtype=np.float64)
    a = np.array([[1, 2], [3, 4]])
    np.var(a)
    np.var(a, axis=0)
    np.var(a, axis=1)
    a = np.zeros((2, 512*512), dtype=np.float32)
    a[0, :] = 1.0
    a[1, :] = 0.1
    np.var(a)
    np.var(a, dtype=np.float64)
Exemplo n.º 5
0
    n = 500
    with open('corpus.txt', 'r', encoding='utf-8') as fin:
        for line in fin:
            line = line.strip().split('\t')
            if len(line) != 4:
                continue

            words = line[3]
            words = [w for w in words.split(' ') if w not in stopwords]
            if len(words) < 10:
                continue

            docs.append(words)
            if n > 0:
                n -= 1
            else:
                break

    with gpu(0):
        plsa = PLSA(docs, 25, 5)
        for i,te, pe in plsa.run():
            print('iter %d, te: %f, pe: %f' % (i, te, pe))

        topic_words = np.argsort(plsa._psi_k_j)
        for t, tw in enumerate(topic_words):
            tw = tw[:20]
            words = [plsa._vocab[int(i)] for i in tw]
            print('topic %d: %s' % (t, ' '.join(words)))