def lidar(args, fds): zlist = [] for z in frange(args.zmin, args.zmax, args.zmicro): zlist.append(z) for x in frange(args.xmin, args.xmax, args.xstep): for y in frange(args.ymin, args.ymax, args.ystep): mems.set_pos(fds['mirror_fd'], x, y) scan(args, fds, zlist, x, y) zlist.reverse()
def mirrorScan(xlist, ylist, zlist): for z in zlist: fds['delay_fd'].write('DLY {:.3f}'.format(z)) time.sleep(1000 / 1000) for x in xlist: for y in ylist: mems.set_pos(fds['mirror_fd'], x, y) time.sleep(100 / 1000) count = count_helper(fds) out = '{:.3f}, {:.3f}, {:.3f}, {}'.format(z, y, x, count) fds['save_fd'].write(out + '\n') if (args.verbose): print out
def lidar(args, fds): #zlist = [z for z in frange(fzmin, fzmax, args.zmicro)] zmin = args.zmin zmax = args.zmax step = args.zmicro macro_step = args.zmacro zlast = 0 prev_peak = -1111 xlist = [x for x in frange(args.xmin, args.xmax, args.xstep)] ylist = [y for y in frange(args.ymin, args.ymax, args.ystep)] zlist = [z for z in frange(zmin, zmax, step)] data_dict = defaultdict(dict) for x in xlist: for y in ylist: data_dict[x][y] = [0, 0] for z in zlist: fds['delay_fd'].write('DLY {:.3f}'.format(z)) time.sleep(0.1) for x in xlist: wait_mirror = 0 for y in ylist: mems.set_pos(fds['mirror_fd'], x, y) time.sleep(4) #wait time to follow beam if (wait_mirror == 0): time.sleep(0.005) wait_mirror = 1 # merge issue correct the code as desired # # count = 0 # count_helper(fds) # out = '{:.3f}, {:.3f}, {:.3f}, {}'.format(z, y, x, count) # fds['save_fd'].write(out+'\n') # if(args.verbose ): # print out # count = count_helper(fds) if count > data_dict[x][y][1]: data_dict[x][y] = [z, count] # out = '{:.3f}, {:.3f}, {:.3f}, {}'.format(z, y, x, count) # fds['save_fd'].write(out+'\n') # if(args.verbose ): # print out for x in xlist: for y in ylist: out = '{:.3f}, {:.3f}, {:.3f}, {}'.format(data_dict[x][y][0], y, x, data_dict[x][y][1]) fds['save_fd'].write(out + '\n')
def adaptive_lidar(args, fds): adaptive = None for x in frange(args.xmin, args.xmax, args.xstep): for y in frange(args.ymin, args.ymax, args.ystep): mems.set_pos(fds['mirror_fd'], x, y) if (adaptive): adpative = fine_scan(args, fds, x, y, adaptive - 2 * args.zmicro, adaptive + 2 * args.zmicro) if (adaptive == None): if (args.verbose): print "Doing a macro scan" zlist = [z for z in frange(args.zmin, args.zmax, args.zmacro)] peak = get_peak(args, fds, zlist) args.zlast = max(zlist) adaptive = fine_scan(args, fds, x, y, peak - 15, peak + 15)
def lidar(args, fds): #zlist = [z for z in frange(fzmin, fzmax, args.zmicro)] zmin = args.zmin zmax = args.zmax step = args.zmicro macro_step = args.zmacro zlast = 0 prev_peak = -1111 for x in frange(args.xmin, args.xmax, args.xstep): for y in frange(args.ymin, args.ymax, args.ystep): mems.set_pos(fds['mirror_fd'], x, y) ######### start of the adaptive if(prev_peak != -1111): data = test_scan(prev_peak - 2*step,prev_peak + 2*step,step,zlast,fds,x,y) prev_peak = data[0] zlast = data[1] #if (data[2] < 20): # prev_peak = -1111 if(prev_peak == -1111): prev_peak = scan(zmin,zmax,macro_step,zlast, fds, x, y) prev_peak = -1111 zlast = zmax
return L mems = m.open_mirror() i = -0.25 j = 0.06 k = -0.05 l = 0.15 ystep = 0.0 04 xstep = 0.05 #time.sleep(1) ylist = [y for y in frange(k, l, ystep)] xlist = [x for x in frange(i, j, xstep)] for y in ylist: #rint(y) for x in xlist: print(x, y) m.set_pos(mems, x, y) #time.sleep(0.5) #time.sleep(0.20) #m.set_pos(mems,-0.05,y) #m.set_pos(mems,j,y) #time.sleep(0.2 ) time.sleep(1) m.set_pos(mems, i, k) m.set_pos(mems, 0, 0) m.close_mirror(mems)
import mirror as m import counter as c import time mems = m.open_mirror() m.set_pos(mems, -0.02 ,0.12) save_file = open("hotTurbulence.csv", 'w') start = time.clock() TDC = 5000 for x in range(0,2000): start = time.clock() # m.set_pos(mems, 0.05, 0.05) #count_fd, control_fd = c.open_counter(5000) count = c.get_count(5000) # m.set_pos(mems, 0, 0) print count #c.count(control_fd, count_fd, 5000) time.sleep(210.0/1000) # c.close(control_fd, count_fd) print time.clock()-start# m.set_pos(mems, 0.05, 0.05) save_file.close() """ m.set_pos(mems,-0.3,0.3) for x in range(0,100): m.set_pos(mems, 0.05, 0.05) count_fd, control_fd = c.open_counter(100) m.set_pos(mems, 0, 0)
DLY_END = 60 DLY_INC = 2 TDC = 500 ymin = 0.5 ymax = 0.76 ystep = 0.05 parser = argparse.ArgumentParser() parser.add_argument('-i', '--itrno', type=str, help='itr no of the file to save the data', default='1') args = parser.parse_args() mems = m.open_mirror() m.set_pos(mems, -0.02, 0.1) dly = Gpib(name =0, pad =5) def frange(end,start=0,inc=0,precision=1): """A range function that accepts float increments.""" import math if not start: start = end + 0.0 end = 0.0 else: end += 0.0 if not inc:
import time DLY_START = -150 DLY_END = 150 DLY_INC = 2 TDC = 100000 parser = argparse.ArgumentParser() parser.add_argument('-i', '--itrno', type=str, help='itr no of the file to save the data', default='1') args = parser.parse_args() mems = m.open_mirror() m.set_pos(mems,-0.03 , -0.03) dly = Gpib(name =0, pad =5) def frange(end,start=0,inc=0,precision=1): """A range function that accepts float increments.""" import math if not start: start = end + 0.0 end = 0.0 else: end += 0.0 if not inc:
import mirror as m mems = m.open_mirror() m.set_pos(mems, 1,1) m.close_mirror(mems)
def lidar(args, fds): zlist = [z for z in frange(args.zmin, args.zmax, args.zmicro)] for x in frange(args.xmin, args.xmax, args.xstep): for y in frange(args.ymin, args.ymax, args.ystep): mems.set_pos(fds['mirror_fd'], x, y) scan(args, fds, zlist, x, y)