Exemplo n.º 1
0
    def __getitem__(self, idx):
        # Read image
        img_path = os.path.join(self.img_dir, self.img_fnames[idx])
        img = np.array(Image.open(img_path), np.float32)[..., :3] / 255.
        H, W = img.shape[:2]

        # Read ground truth corners
        with open(os.path.join(self.cor_dir, self.txt_fnames[idx])) as f:
            cor = np.array(
                [line.strip().split() for line in f if line.strip()],
                np.float32)

            # Corner with minimum x should at the beginning
            cor = np.roll(cor[:, :2], -2 * np.argmin(cor[::2, 0]), 0)

            # Detect occlusion
            occlusion = find_occlusion(cor[::2].copy()).repeat(2)
            assert (np.abs(cor[0::2, 0] - cor[1::2, 0]) >
                    W / 100).sum() == 0, img_path
            assert (cor[0::2, 1] > cor[1::2, 1]).sum() == 0, img_path

        # Stretch augmentation
        if self.stretch:
            xmin, ymin, xmax, ymax = cor2xybound(cor)
            kx = np.random.uniform(1.0, self.max_stretch)
            ky = np.random.uniform(1.0, self.max_stretch)
            if np.random.randint(2) == 0:
                kx = max(1 / kx, min(0.5 / xmin, 1.0))
            else:
                kx = min(kx, max(10.0 / xmax, 1.0))
            if np.random.randint(2) == 0:
                ky = max(1 / ky, min(0.5 / ymin, 1.0))
            else:
                ky = min(ky, max(10.0 / ymax, 1.0))
            img, cor = panostretch.pano_stretch(img, cor, kx, ky)

        # Prepare 1d ceiling-wall/floor-wall boundary
        bon_ceil_x, bon_ceil_y = [], []
        bon_floor_x, bon_floor_y = [], []
        n_cor = len(cor)
        for i in range(n_cor // 2):
            xys = panostretch.pano_connect_points(cor[i * 2],
                                                  cor[(i * 2 + 2) % n_cor],
                                                  z=-50)
            bon_ceil_x.extend(xys[:, 0])
            bon_ceil_y.extend(xys[:, 1])
        for i in range(n_cor // 2):
            xys = panostretch.pano_connect_points(cor[i * 2 + 1],
                                                  cor[(i * 2 + 3) % n_cor],
                                                  z=50)
            bon_floor_x.extend(xys[:, 0])
            bon_floor_y.extend(xys[:, 1])
        bon_ceil_x, bon_ceil_y = sort_xy_filter_unique(bon_ceil_x,
                                                       bon_ceil_y,
                                                       y_small_first=True)
        bon_floor_x, bon_floor_y = sort_xy_filter_unique(bon_floor_x,
                                                         bon_floor_y,
                                                         y_small_first=False)
        bon = np.zeros((2, W))
        bon[0] = np.interp(np.arange(W), bon_ceil_x, bon_ceil_y, period=W)
        bon[1] = np.interp(np.arange(W), bon_floor_x, bon_floor_y, period=W)
        bon = ((bon + 0.5) / img.shape[0] - 0.5) * np.pi

        # Random flip
        if self.flip and np.random.randint(2) == 0:
            img = np.flip(img, axis=1)
            bon = np.flip(bon, axis=1)
            cor[:, 0] = img.shape[1] - 1 - cor[:, 0]

        # Random horizontal rotate
        if self.rotate:
            dx = np.random.randint(img.shape[1])
            img = np.roll(img, dx, axis=1)
            bon = np.roll(bon, dx, axis=1)
            cor[:, 0] = (cor[:, 0] + dx) % img.shape[1]

        # Random gamma augmentation
        if self.gamma:
            p = np.random.uniform(1, 2)
            if np.random.randint(2) == 0:
                p = 1 / p
            img = img**p

        # Prepare 1d wall-wall probability
        corx = cor[~occlusion, 0]
        dist_o = cdist(corx.reshape(-1, 1),
                       np.arange(img.shape[1]).reshape(-1, 1),
                       p=1)
        dist_r = cdist(corx.reshape(-1, 1),
                       np.arange(img.shape[1]).reshape(-1, 1) + img.shape[1],
                       p=1)
        dist_l = cdist(corx.reshape(-1, 1),
                       np.arange(img.shape[1]).reshape(-1, 1) - img.shape[1],
                       p=1)
        dist = np.min([dist_o, dist_r, dist_l], 0)
        nearest_dist = dist.min(0)
        y_cor = (self.p_base**nearest_dist).reshape(1, -1)

        # Convert all data to tensor
        x = torch.FloatTensor(img.transpose([2, 0, 1]).copy())
        bon = torch.FloatTensor(bon.copy())
        y_cor = torch.FloatTensor(y_cor.copy())

        # Check whether additional output are requested
        out_lst = [x, bon, y_cor]
        if self.return_cor:
            out_lst.append(cor)
        if self.return_path:
            out_lst.append(img_path)

        return out_lst
Exemplo n.º 2
0
    def __getitem__(self, idx):
        # Read image
        img_path = os.path.join(self.img_dir, self.img_fnames[idx])
        img = np.array(Image.open(img_path), np.float32)[..., :3] / 255.
        H, W = img.shape[:2]
        # init random variable
        rnd_y, rnd_x = 0, 0

        # Read ground truth corners
        with open(os.path.join(self.cor_dir, self.txt_fnames[idx])) as f:
            cor = np.array([line.strip().split() for line in f], np.float32)

            # Corner with minimum x should at the beginning
            cor = np.roll(cor[:, :2], -2 * np.argmin(cor[::2, 0]), 0)

            # Detect occlusion
            occlusion = find_occlusion(cor[::2].copy()).repeat(2)
            assert (cor[0::2, 0] != cor[1::2, 0]).sum() == 0
            assert (cor[0::2, 1] > cor[1::2, 1]).sum() == 0

        # Stretch augmentation
        if self.stretch:
            xmin, ymin, xmax, ymax = cor2xybound(cor)
            kx = np.random.uniform(1.0, self.max_stretch)
            ky = np.random.uniform(1.0, self.max_stretch)
            if np.random.randint(2) == 0:
                kx = max(1 / kx, min(0.5 / xmin, 1.0))
            else:
                kx = min(kx, max(10.0 / xmax, 1.0))
            if np.random.randint(2) == 0:
                ky = max(1 / ky, min(0.5 / ymin, 1.0))
            else:
                ky = min(ky, max(10.0 / ymax, 1.0))
            img, cor = panostretch.pano_stretch(img, cor, kx, ky)

        # Prepare 1d ceiling-wall/floor-wall boundary
        bon = np.zeros((2, W))
        bon[0, :] = 1e9
        bon[1, :] = -1e9
        n_cor = len(cor)
        for i in range(n_cor // 2):
            xys = panostretch.pano_connect_points(cor[i * 2],
                                                  cor[(i * 2 + 2) % n_cor],
                                                  z=-50)
            xys = xys.astype(int)
            bon[0, xys[:, 0]] = np.minimum(bon[0, xys[:, 0]], xys[:, 1])
        for i in range(n_cor // 2):
            xys = panostretch.pano_connect_points(cor[i * 2 + 1],
                                                  cor[(i * 2 + 3) % n_cor],
                                                  z=50)
            xys = xys.astype(int)
            bon[1, xys[:, 0]] = np.maximum(bon[1, xys[:, 0]], xys[:, 1])
        bon = ((bon + 0.5) / img.shape[0] - 0.5) * np.pi

        #print("boundary before {}".format(bon))
        #print("corner before {}".format(cor))
        # bon to relative height v
        # Random flip
        if self.flip and np.random.randint(2) == 0:
            img = np.flip(img, axis=1)
            bon = np.flip(bon, axis=1)
            cor[:, 0] = img.shape[1] - 1 - cor[:, 0]

        # Random horizontal rotate
        if self.rotate:
            dx = np.random.randint(img.shape[1])
            img = np.roll(img, dx, axis=1)
            bon = np.roll(bon, dx, axis=1)
            cor[:, 0] = (cor[:, 0] + dx) % img.shape[1]

        # Random gamma augmentation
        if self.gamma:
            p = np.random.uniform(1, 2)
            if np.random.randint(2) == 0:
                p = 1 / p
            img = img**p
        #random x rotate around x axis?
        if (self.max_x_rotate > 0 and self.max_x_rotate > self.min_x_rotate):
            rnd = np.random.uniform()
            if (rnd > self.x_rotate_prob):
                rnd_x = np.random.randint(self.min_x_rotate, self.max_x_rotate)
                img = pano_lsd_align.rotatePanorama_degree(img, rnd_x, axis=1)
                #bon,cor = pano_lsd_align.rotateCorners(bon,cor,rnd_x,axis=1) #simple :> its not working :<      use -rnd_x instead of rnd_x here
        #random z rotate around y axis?
        if (self.max_y_rotate > 0 and self.max_y_rotate > self.min_y_rotate):
            rnd = np.random.uniform()
            if (rnd > self.y_rotate_prob):
                rnd_y = np.random.randint(self.min_y_rotate, self.max_y_rotate)
                img = pano_lsd_align.rotatePanorama_degree(img, rnd_y, axis=2)
                #bon,cor = pano_lsd_align.rotateCorners(bon,cor,rnd_y,axis=2) #simple :>  use -rnd_y instead of rnd_y here
        #print("boundary after {}".format(bon))
        #print("corner after {}".format(cor))
        # Prepare 1d wall-wall probability
        corx = cor[~occlusion, 0]
        dist_o = cdist(corx.reshape(-1, 1),
                       np.arange(img.shape[1]).reshape(-1, 1),
                       p=1)
        dist_r = cdist(corx.reshape(-1, 1),
                       np.arange(img.shape[1]).reshape(-1, 1) + img.shape[1],
                       p=1)
        dist_l = cdist(corx.reshape(-1, 1),
                       np.arange(img.shape[1]).reshape(-1, 1) - img.shape[1],
                       p=1)
        dist = np.min([dist_o, dist_r, dist_l], 0)
        nearest_dist = dist.min(0)
        y_cor = (self.p_base**nearest_dist).reshape(1, -1)

        # Convert all data to tensor
        x = torch.FloatTensor(img.transpose([2, 0, 1]).copy())
        #print(x.shape)
        bon = torch.FloatTensor(bon.copy())
        y_cor = torch.FloatTensor(y_cor.copy())
        #print("boundary final {}".format(bon))
        #print("corner final {}".format(y_cor))

        # Check whether additional output are requested
        #rnd_x rnd_y are in degrees
        out_lst = [x, bon, y_cor, rnd_x, rnd_y]
        if self.return_cor:
            out_lst.append(cor)
        if self.return_path:
            out_lst.append(img_path)

            out_lst
        return out_lst