Exemplo n.º 1
0
    def get_save_path(self):
        """ Returns the current model root path."""
        fileName = self.modelUuid
        path = utils.get_data_path() + fileName + "/"

        try:
            utils.create_dir_if_necessary(path)
        except:
            logging.exeption(
                "Could not create dir to save classifier in. Saving in {0} instead."
                .format(utils.get_data_path()))
            path = utils.get_data_path()
        return path
Exemplo n.º 2
0
    def learn_custom_marker(self):
        """ "Learns a custom rectangular marker object by calculating SIFT keypoints."""

        markerImage = load_image(utils.get_path_via_file_ui(), 0, 1)
        # save image 
        cv.imwrite(utils.get_data_path() + "segmentationMarkerImage.jpg", markerImage)
        sift = cv.SIFT()
        self.CUSTOM_MARKER = sift.detectAndCompute(markerImage, None) # contains keypoints and descriptors
        self.MARKER_SIZE = (utils.value_question("[Marker Size]", "What is the marker width in cm?", "f"), utils.value_question("[Marker Size]", "What is the marker height in cm?", "f"))

        # save marker (not saving keypoints as they are not pickable)
        markerFile = {"marker": self.CUSTOM_MARKER[1], "markerDimension": self.MARKER_SIZE}
        with open(utils.get_data_path() + "segmentationMarker", "wb") as f:
            pickle.dump(markerFile, f)

        raw_input("Learning complete. Press any key to continue")
Exemplo n.º 3
0
    def restore_custom_marker(self):
        """ Restores a custom marker from a file."""

        path = utils.get_data_path() + "segmentationMarker"
        if utils.check_if_file_exists(path):  
            with open(path, "r") as f:
                markerFile = pickle.load(f) 
                self.MARKER_SIZE = markerFile["markerDimension"]
                

                # restore kps
                self.CUSTOM_MARKER_IMAGE = cv.imread(utils.get_data_path() + "segmentationMarkerImage.jpg", 0)
                sift = cv.SIFT()
                kp = sift.detect(self.CUSTOM_MARKER_IMAGE,None)
                self.CUSTOM_MARKER = (kp, markerFile["marker"])

                print "restored custom marker"
Exemplo n.º 4
0
    def restore_classifier(self):
        # does the directory exist?
        path = utils.get_data_path() + self.name + "/"
        if not utils.check_if_dir_exists(path):
            return False

        # iterate over __classifiers and try to restore them using the name
        for classifierIndex in xrange(len(self.__classifiers)):
            # check classifier folder
            classifier = self.__classifiers[classifierIndex]
            classifierPath = utils.get_data_path() + classifier.name + "/"
            if not utils.check_if_dir_exists(classifierPath):
                return False
            self.__classifiers[classifierIndex] = classifier.load(
                classifierPath)
            print "*  loaded {0} {1} including {2} SVMs.".format(
                str(classifier), classifier.name,
                len(self.__classifiers[classifierIndex].svms))
        print "** Successfully loaded all classifiers.\n"
        return True
Exemplo n.º 5
0
def get_model_dict():
    """ Loads and returns the model dictionary."""

    # load classifier dictionary
    path = utils.get_data_path() + "model_dictionary"

    # initialize if file doesn't exist
    modelDictionary = {}
    if utils.check_if_file_exists(path):
        with open(path, "r") as f:
            modelDictionary = pickle.load(f)
    return modelDictionary
Exemplo n.º 6
0
    def load(self):
        path = get_data_path() + "settings.dat"
        if not os.path.isfile(path):
            return self

        with open(path, "r") as f:
            loadedSettings = pickle.load(f)

        # update module values
        # G - General
        Settings.G_TEST_DATA_PATH = loadedSettings.G_TEST_DATA_PATH
        Settings.G_EVALUATION_DETAIL_HIGH = loadedSettings.G_EVALUATION_DETAIL_HIGH
        Settings.G_DETAILED_CONSOLE_OUTPUT = loadedSettings.G_DETAILED_CONSOLE_OUTPUT
        Settings.G_MAIL_FROM = loadedSettings.G_MAIL_FROM
        Settings.G_MAIL_TO = loadedSettings.G_MAIL_TO
        Settings.G_MAIL_SERVER = loadedSettings.G_MAIL_SERVER
        Settings.G_MAIL_USER = loadedSettings.G_MAIL_USER
        Settings.G_MAIL_PASSWD = loadedSettings.G_MAIL_PASSWD
Exemplo n.º 7
0
 def load(self, path=utils.get_data_path(), fileName=None):
     if fileName is None:
         fileName = "knn_" + self.className
     path += fileName + ".xml"
     self.__model.load(path)
Exemplo n.º 8
0
 def save(self, path=utils.get_data_path(), fileName=None):
     if fileName is None:
         fileName = "knn_" + self.className
     path += fileName + ".xml"
Exemplo n.º 9
0
 def save(self, path=utils.get_data_path(), fileName=None):
     if fileName is None:
         fileName = "svm_" + self.className
     path += fileName + ".xml"
     self.__model.save(path)
Exemplo n.º 10
0
 def save(self, path=utils.get_data_path(), fileName=None):
     print "No pickle support. Use sklearn save method."
Exemplo n.º 11
0
 def load(self, path=utils.get_data_path(), fileName=None):
     """ Method to load a svm."""
     raise NotImplementedError("abstract class")
Exemplo n.º 12
0
 def save(self):
     path = get_data_path() + "settings.dat"
     with open(path, "wb") as f:
         pickle.dump(self, f)
Exemplo n.º 13
0
class HighscoreService(object):
    """Deprecated High score class."""

    HIGHSCORES_STANDARD_PATH = utils.get_data_path() + "Highscores.dat"

    def __init__(self):
        self.highscores = []

    def insert_score(self, score, description):
        """ Inserts a score and a description and resorts the resulting list of scores."""
        self.highscores.append((score, description))
        self.__sort_scores()

        # calculate position
        position = 0
        for i in range(len(self.highscores)):
            s, _ = self.highscores[i]
            if s == score:
                position = i + 1

        self.save()
        return position

    def get_position(self, position):
        """ Returns the score for a position."""
        return self.highscores[position - 1]

    def print_surrounding_highscores(self, position):
        """ 
        Prints the surrounding scores around a position.
        Takes two scores before and two after position.
        """

        # prevent overflow. Positions are naturally measured from 1 to n (not from 0 to n-1)
        betterPosition = max(1, position - 2)
        worsePosition = min(len(self.highscores), position + 2)
        higherScores = self.highscores[betterPosition - 1:position - 1]
        lowerScores = self.highscores[position:worsePosition]

        own_score, own_description = self.highscores[position - 1]

        for score, description in higherScores:
            print "\t\t[{0}]\t{1}".format(str(round(score, 3)), description)
        print "**\t{0}.\t[{1}]\t{2} **".format(position,
                                               str(round(own_score, 3)),
                                               own_description)
        for score, description in lowerScores:
            print "\t\t[{0}]\t{1}".format(str(round(score, 3)), description)

    def print_highscore(self):
        """ Prints the complete high score list to the console."""
        for i in range(len(self.highscores)):
            score, description = self.highscores[i]
            print "\t{0}.\t[{1}]\t{2}".format(i + 1, str(round(score, 3)),
                                              description)

    def __sort_scores(self):
        self.highscores = sorted(self.highscores,
                                 key=operator.itemgetter(0),
                                 reverse=True)

    def load(self):
        if not os.path.isfile(HighscoreService.HIGHSCORES_STANDARD_PATH):
            self.highscores = []
            return self

        with open(HighscoreService.HIGHSCORES_STANDARD_PATH, "r") as f:
            self = pickle.load(f)

        return self

    def save(self):
        with open(HighscoreService.HIGHSCORES_STANDARD_PATH, "wb") as f:
            pickle.dump(self, f)
Exemplo n.º 14
0
def save_model_dict(modelDictionary):
    """ Saves the model dictionary to file."""

    with open(utils.get_data_path() + "model_dictionary", "wb") as f:
        pickle.dump(modelDictionary, f)