Exemplo n.º 1
0
def get_barlow_params(events, params):
    ''' get unweighted histograms and normalization
        factors for barlow LH

        :type  events: a dictionary
        :param events: baseline events from all dtypes

        :type  params: a dictionary
        :param params: minimizer start values by user

        :return unhistos: a dictionary
                unhistos: unweighted histograms for all dtypes
     
        :return norms: a dictionary
                norms: normalization factors
    '''

    unhistos, norms = Map({}), Map({})
    edges = info.get_edges()
    for dtype in events:
        ## get unweighted histograms
        weights = np.ones(len(events[dtype].reco.e))
        H, H2 = member.get_histogram(edges, weights=weights)
        unhistos[dtype] = Map({'H': H, 'H2': H2})
        ## get the normalization factor
        key = 'atmmu' if 'muon' in dtype else 'noise' if 'noise' in dtype else 'numu'
        norm = params['norm_nutau'] if 'nutau' in dtype else \
               params['norm_nc'] if 'nc' in dtype else 1
        norm *= params['norm_' + key]
        norms[dtype] = norm

    return unhistos, norms
Exemplo n.º 2
0
    def set_weighters(self, params, matter=True, oscnc=False):
        ''' set weighters for each member into self.
                    weighters per data type (for all systematic sets)
                    probmaps per numu / nue / nutau (for both CC and
                    NC and all systematic sets)

                    :type    params: a dictionary
                    :param   params: values of floating parameters

                    :type    matter: boolean
                    :param   matter: if True, include matter effect

                    :type     oscnc: boolean
                    :param    oscnc: if True, oscillate NC events
                '''

        weighters = Map({})
        pmaps = self.probmaps if hasattr(self, 'probmaps') else Map({})
        for dtype in self._dtypes:
            pmap = pmaps [dtype[:-2]] if 'nu' in dtype and \
                   dtype[:-2] in pmaps \
                   else None
            weighters[dtype] = self._baseline[dtype].get_weighter(
                params, matter=matter, oscnc=oscnc, pmap=pmap)
            if 'nu' in dtype: pmaps[dtype[:-2]] = weighters[dtype].probmap
        self.weighters = weighters
        self.probmaps = pmaps
Exemplo n.º 3
0
        def get_hplanes (self, nuparams, matter=True, oscnc=False, verbose=1):

                ''' collect hyperplane objects from all data types

                    Note: hyperplanes are based upon systematic histograms
                          weighted by the seeded MC values in nuparams

                    :param nuparams (`Nuparams`): user settings of floating parameters
                    :param matter   (bool)      : If True, include matter effect
                    :param oscnc    (bool)      : If True, oscillate NC events
                    :param verbose  (int)       : If 0, no printout
                                                  If 1, print out basic info
                                                  If 2, print out info within chi2 fit

                    :return hplanes (dict): hyperplane objects for all members
                '''
                
                ## collect systematic histograms
                params = nuparams.extract_params ('seeded')
                ## only for neutrinos and muons
                dtypes = [ dtype for dtype in self.members
                           if dtype[:2] in ['nu', 'mu'] ]
                ## collect systematic information
                syshistos = Map ({})
                if self.verbose > 1: print ('####  collecting sys histograms')
                for dtype in dtypes:
                        if self.verbose > 1: print ('####  -- {0}'.format (dtype))
                        hparams = nuparams.get_hplaned_dparams (dtype)
                        syshistos[dtype] = self.collect_sys_histograms (dtype, params,
                                                                        hparams,
                                                                        matter=matter,
                                                                        oscnc=oscnc)
                if self.verbose > 1: print ('####')
                        
                ## special treatment for nunc
                nc = sorted ([ dtype for dtype in dtypes if 'nc' in dtype ])
                if len (nc) > 0:
                        dtypes = sorted ([ dtype for dtype in dtypes
                                           if not 'nc' in dtype ] + ['nunc'])

                ## collect hyperplane objects
                hplanes = Map ({})
                ## get hplanes
                if self.verbose > 1: print ('####  collecting hplanes')
                for dtype in dtypes:
                        if self.verbose > 1: print ('####    -- {0}'.format (dtype))
                        hparams = nuparams.get_hplaned_dparams (dtype)
                        ## hyperplane is built only if at least one discrete parameter
                        if len (hparams) == 0:
                                hplanes[dtype] = None; continue
                        expparams = nuparams.get_exp_dparams (dtype)
                        histos = self.merge_nunc (dtype, syshistos, nc)
                        hplanes[dtype] = HyperPlane (dtype, histos, expparams,
                                                     hparams, verbose=verbose)
                if self.verbose > 1: print ('####')
                return hplanes        
Exemplo n.º 4
0
        def _collect_sys_members (self, dtype, hparam, default, has_bulkice):

                ''' collect all set members for a specific data type
                    and a specific discrete parameter

                    :param hparam  (str): name of the discrete systematics
                    :param dtype   (str): name of the given member
                    :param default (dict): keys:default values of discrete systematics
                    :param has_bulkice (bool): If True, include bulk ice off axis points

                    :return members (`Map`): dictionary with all `Members` objects
                '''
                
                set_members = Map ({})
                sets = get_sets (dtype, hparam, has_bulkice=has_bulkice)
                for s in sets:
                        setid, setvalues = self._get_setvalues (s, dtype,
                                                                hparam, default)
                        isdef = self._check_setid (setid, default)
                        ## don't waste time if it is the default set and already stored
                        if setid in set_members:
                                if not defid == setid:
                                        message = 'Library:' + fname + \
                                                  ' : WARNING : setid (' + setid + \
                                                  ') already exist in the dictionary !'
                                        print ('{0}'.format (message))
                                continue
                        set_members [setid] = Member (dtype, self.ppath,
                                                      ranges=self._ranges,
                                                      baseline=False,
                                                      isdragon=self.isdragon, 
                                                      sysvalues=setvalues)
                return set_members
Exemplo n.º 5
0
    def collect_base_histograms(self, params, matter=True, oscnc=False):
        ''' get all baseline histograms from all members

                    Note: You might want to have weighters set defined
                          otherwise, it will do it here.

                    :type     params: a dictionary
                    :param    params: values of floating parameters

                    :type    matter: boolean
                    :param   matter: if True, include matter effect

                    :type     oscnc: boolean
                    :param    oscnc: if True, oscillate NC events

                    :return  histos: a dictionary
                             histos: all baseline histograms
                '''
        start_time = time.time()

        ## collect baseline histograms
        histos = Map({})
        for dtype in self._dtypes:
            if self._verbose > 1: print('####    -- {0}'.format(dtype))
            member = self._baseline[dtype]
            histos[dtype] = self._get_histogram(member,
                                                params,
                                                isbaseline=True,
                                                matter=matter,
                                                oscnc=oscnc)
        if self._verbose > 1: print('####')

        dtime = (time.time() - start_time) / 60.
        return histos
Exemplo n.º 6
0
    def merge_nunc(self, dtype, histos, ncdtypes):
        ''' merge any nc members into one histogram

                    :type      dtype: a string
                    :param     dtype: name of data type

                    :type  histos: a dictionary
                    :param histos: histograms of all discrete sets from all dtypes

                    :type  ncdtypes: a list 
                    :param ncdtypes: nc data type

                    :return refvalues: a dictionary
                            refvalues: reference values of the discrete parameters

                    :return histos: a dictionary
                            histos: all systematic histograms from this data type
                '''

        ## return if not nunc
        if not 'nc' in dtype:
            return histos[dtype]

        ## massage nc
        nchistos = Map({})
        for setid in histos[ncdtypes[0]]:
            nchistos[setid] = {
                'H':
                sum([histos[ncdtype][setid]['H'] for ncdtype in ncdtypes]),
                'H2':
                sum([histos[ncdtype][setid]['H2'] for ncdtype in ncdtypes])
            }
        return nchistos
Exemplo n.º 7
0
    def apply_hplanes(self, bhistos, hplanes, params):
        ''' multiply hyperplane factor to each member template

                    :type  bhistos: a dictionary
                    :param bhistos: all baseline histograms

                    :type  hplanes: a dictionary
                    :param hplanes: hyperplane objects for all data types

                    :type   params: a dictionary
                    :param  params: values of floating parameters

                    :return mhistos: a dictionary
                            mhistos: modified baseline histograms
                '''

        mhistos = Map({})
        for dtype in self._dtypes:
            hplane = hplanes['nunc'] if 'nc' in dtype else \
                     hplanes[dtype] if dtype in hplanes else None
            ## if no hyperplane, histo same base histo
            if not hplane:
                mhistos[dtype] = bhistos[dtype]
                continue
            factors = hplane.apply(params)
            mhistos[dtype] = {
                'H': bhistos[dtype]['H'] * factors,
                'H2': bhistos[dtype]['H2'] * factors**2
            }
        return mhistos
Exemplo n.º 8
0
        def collect_base_histograms (self, params,
                                     matter=True, oscnc=False):

                ''' get all baseline histograms from all members

                    Note: You might want to have weighters set defined
                          otherwise, it will do it here.

                    :param params (dict): values of floating parameters
                    :param matter (bool): If True, include matter effect
                    :param oscnc  (bool): If True, oscillate NC events

                    :return histos (dict): all baseline histograms
                '''
                
                histos = Map ({})
                for dtype in self.members:
                        if self.verbose > 1: print ('####    -- {0}'.format (dtype))
                        member = self._baseline [dtype]
                        histos [dtype] = self._get_histogram (member, params,
                                                              isbaseline=True,
                                                              matter=matter,
                                                              oscnc=oscnc)
                if self.verbose > 1: print ('####')
                return histos
Exemplo n.º 9
0
        def _get_histogram (self, member, params,
                            isbaseline=False, matter=True, oscnc=False):

                ''' get one histogram from one member

                    :param member (`Member`): a member instance
                    :param params     (dict): values of floating parameters
                    :param isbaseline (bool): If True , use self.weighters
                                              If False, redefine weighters for sys sets
                    :param matter     (bool): If True, include matter effect
                    :param oscnc      (bool): If True, oscillate NC events

                    :return hdict (dict): histogram from this member
                                          {'H'  = histogram weighted by weights,
                                           'H2' = variance of H                 }
                '''

                dtype = member.dtype
                if isbaseline:
                        ## BASELINE: weighters in self
                        if not hasattr (self, 'weighters'):
                                self.set_weighters (params, matter=matter, oscnc=oscnc)
                        weighter = self.weighters [dtype]
                else:
                        ## NOT BASELINE: one-time weighter
                        pmap = self.probmaps[dtype[:-2]] if 'nu' in dtype else None
                        weighter = member.get_weighter (params, matter=matter,
                                                        oscnc=oscnc, pmap=pmap)
                        
                weights = member.get_weights (params, weighter=weighter)
                H, H2 = member.get_histogram (self.edges, weights=weights)
                return Map ({'H':H, 'H2':H2})
Exemplo n.º 10
0
    def _get_sys_histograms(self,
                            dtype,
                            params,
                            hparams,
                            default,
                            matter=True,
                            oscnc=False):
        ''' get all systematic histograms of a data type.
                    
                    :type      dtype: a string
                    :param     dtype: name of data type

                    :type     params: a dictionary
                    :param    params: values of floating parameters

                    :type    hparams: a list
                    :param   hparams: discrete parameters to be included in hplane

                    :type    default: a dictionary
                    :param   default: keys/default values of discrete systematics

                    :type    matter: boolean
                    :param   matter: if True, include matter effect

                    :type     oscnc: boolean
                    :param    oscnc: if True, oscillate NC events
                
                    :return  histos: a dictionary
                             histos: all systematic histograms
                '''

        histos = Map({})
        has_bulkice = 'scattering' in hparams and 'absorption' in hparams
        for hp in sorted(hparams):
            if self._verbose > 1: print('####    -- {0}'.format(hp))
            ## get member of this discrete param
            members = self._collect_sys_members(dtype, hp, default,
                                                has_bulkice)
            ## get histogram from each set
            for setid in members:
                if self._verbose > 1: print('####        -- {0}'.format(setid))
                # check if it is default set
                isdef = self._check_setid(setid, default)
                # don't waste time on redoing default set
                if isdef and setid in histos: continue
                # get histogram of this setid
                histos[setid] = self._get_histogram(members[setid],
                                                    params,
                                                    isbaseline=False,
                                                    matter=matter,
                                                    oscnc=oscnc)
                # define normalization factor
                if isdef: norm = np.sum(histos[setid]['H'])
                # apply normalization factor if coin set
                if hp == 'coin':
                    hsum = np.sum(histos[setid]['H'])
                    factor = norm / hsum if hsum else 1.0
                    histos[setid]['H'] *= factor
            if self._verbose > 1: print('####')
        return histos
Exemplo n.º 11
0
    def ts_func (self, dm31, theta23, theta13,
                 nyears, gamma, nue_numu_ratio, muon_flux,
                 barr_nu_nubar, barr_nubar_ratio, barr_uphor_ratio, 
                 norm_noise, norm_numu, norm_nc, norm_atmmu, 
                 norm_nugen, norm_nugenHE, norm_corsika, norm_nutau,
                 domeff, holeice, forward, coin, absorption, scattering,
                 axm_res, axm_qe, DISa_nu, DISa_nubar, spe_corr):

        ''' determine ts value. This function will be looped many many times. '''

        ### recognize, check, and print parameters
        local = locals ()
        params = {}
        for p in local:
            if p in self._nuparams.get_all_params ():
                params[p] = local[p]
        self._check_params (params)

        ### update histogram with these params
        uhistos = self._lib.collect_base_histograms (params)
        uhistos = self._lib.apply_hplanes (uhistos, self._temp.hplanes, params)
        uhistos = self._lib.scale_histos (uhistos, params)
        template = Map ({  'H':sum ([uhistos[dtype]['H']  for dtype in uhistos]),
                          'H2':sum ([uhistos[dtype]['H2'] for dtype in uhistos]) })

        ### calculate test statistics
        self._LH.set_histos (uhistos)
        rawts, bints, As = self._LH.get_ts ()

        ### add prior terms
        ts = self._add_penalties (rawts, params)

        ### print outs
        if self._verbose > 3:
            self._print_rates (uhistos, template, rawts)
        ### save results if needed
        if ts < self.tsvalue:
            self.tsvalue = ts
            self.bestfit = Map ({ 'H':template['H'], 'H2':template['H2'], 'ts':bints })
            self.barlow_As = As

        ### update internal parameter values
        self._params = params
        return ts
Exemplo n.º 12
0
    def __init__ (self, nuparams, params, lib, LH, temp,
                  fparams=None,
                  verbose=1):

        ''' initialize fitter class

            :type  nuparams: a Nuparams object
            :param nuparams: users setting of nuisance parameters

            :type  params: a dictionary
            :param params: values of parameters

            :type  lib: a Library object
            :param lib: info of all members / dtypes involved

            :type  LH: a Likelihood object
            :param LH: likelihood for minimization

            :type  temp: a Template object
            :param temp: template objects for printing histogram rates

            :type  fparams: a numpy array / list
            :param fparams: osc parmaeters to be fixed

            :type  verbose: int
            :param verbose: If 0: no printout.
                            If 1: minimum printout.
                            If 2: print iteration, oscparams blinded.
                            If 3: print iteration, unblinded.
                            If 4: print info per bin per iteration; oscparams unblineded
        '''
        
        print ('#### ##################################################')
        print ('#### ################### Fitter #######################')
        print ('####')


        self._nuparams = nuparams
        self._params = params
        self._lib, self._LH, self._temp = lib, LH, temp
        self._fparams = fparams
        self._verbose = verbose

        ## define holders
        self.bestfit = Map ({'H':[], 'H2':[], 'ts':[]})
        self.tsvalue = np.inf
        self.barlow_As = None

        ## print info
        if self._verbose > 1: self._print_header ()

        ## minimize !
        self.results = self._minimize ()
        print ('#### ##################################################')
Exemplo n.º 13
0
        def apply_cut (self, ddict, cut):

                ''' apply cut to a dictionary

                    :param ddict (`Map`): dictionary containing all events
                    :param cut   (np.array of bool): boolean to select events

                    :return cdict (`Map`): dictionary containing selected events
                '''
            
                cdict = Map({})
                for key in ddict.keys():
                        ### deal with arrays
                        cdict[key] = toolbox.chop (ddict[key], cut)
                        ### deal with arrays in dictionary
                        if toolbox.is_dict (ddict[key]):
                                cdict[key] = Map ({})
                                for skey in ddict[key].keys():
                                        cdict[key][skey] = toolbox.chop (ddict[key][skey], cut)
                return cdict
Exemplo n.º 14
0
        def _collect_base_members (self):

                ''' collect all baseline members

                    :return members (`Map`): dictionary with all `Members` objects
                '''
                
                members = Map ({})
                for dtype in self.members:
                        members[dtype] = Member (dtype, self.ppath,
                                                 ranges=self._ranges,
                                                 isdragon=self.isdragon, 
                                                 baseline=True)
                return members
Exemplo n.º 15
0
    def _collect_base_members(self):
        ''' collect all baseline members

                    :return  members: a Map object
                             members: contains all members objects
                '''

        members = Map({})
        for dtype in self._dtypes:
            members[dtype] = Member(dtype,
                                    self._pdictpath,
                                    ranges=self._ranges,
                                    baseline=True)
        return members
Exemplo n.º 16
0
    def _get_histogram(self,
                       member,
                       params,
                       isbaseline=False,
                       matter=True,
                       oscnc=False):
        ''' get one histogram from one member

                    :type    member: a Member object
                    :param   member: events to be histogrammed

                    :type    params: a dictionary
                    :param   params: values of floating parameters

                    :type   isbaseline: boolean
                    :param  isbaseline: if True, use self.weighters
                                        if False, redefine weighters for sys sets

                    :type    matter: boolean
                    :param   matter: if True, include matter effect

                    :type     oscnc: boolean
                    :param    oscnc: if True, oscillate NC events

                    :return   hdict: a dictionary
                              hdict: 'H' = histogram weighted by weight
                                     'H2' = histogram weighted by weight**2
                '''

        dtype = member.get_dtype()
        if isbaseline:
            ## BASELINE: weighters in self
            if not hasattr(self, 'weighters'):
                self.set_weighters(params, matter=matter, oscnc=oscnc)
            weighter = self.weighters[dtype]
        else:
            ## NOT BASELINE: one-time weighter
            pmap = self.probmaps[dtype[:-2]] if 'nu' in dtype else None
            weighter = member.get_weighter(params,
                                           matter=matter,
                                           oscnc=oscnc,
                                           pmap=pmap)

        weights = member.get_weights(params, weighter=weighter)
        H, H2 = member.get_histogram(self._edges, weights=weights)

        return Map({'H': H, 'H2': H2})
Exemplo n.º 17
0
    def _get_totalmc (self, histos):

        ''' get total mc from histograms of all data types

            :type  histos: dictionary
            :param histos: {'numucc': {'H':[], 'H2':[]},
                            'nuecc' : {'H':[], 'H2':[]}, ...}

            :return  totalmc: a dictionary
                     totalmc: total MC {'H':[], 'H2':[]}
        '''
            
        mc = Map ({'H':np.zeros (self._shape), 'H2':np.zeros (self._shape)})
        for i, dtype in enumerate (self._dtypes):
            mc['H']  += histos[dtype]['H']
            mc['H2'] += histos[dtype]['H2']
        return mc
Exemplo n.º 18
0
def collect_events(lib, dtypes):
    ''' collect baseline events.

        :type  lib: a Library object
        :param lib: contains events for all members

        :type  dtypes: a list or numpy array
        :param dtypes: datatypes involved
    
        :return events: a dictionary / Map
                events: baseline events for all dtypes
    '''

    events = Map({})
    for dtype in dtypes:
        events[dtype] = lib._baseline[dtype]._events
    return events
Exemplo n.º 19
0
    def get_data(self, params, fitdata, diff):
        ''' obtain data histogram

            :type  params: dictionary
            :param params: values of floating parameters

            :type  fitdata: boolean
            :param fitdata: If True, fit to real data

            :type  diff: boolean
            :param diff: If True, injected is different from seeded

            :retrun H: a multi-dimensional array
                    H: data histogram in counts

            :return H2: a multi-dimensional array
                    H2: variance of data histogram
        '''

        if fitdata:
            ## If fitdata, fit to real data
            data = Member('data', self.ppath, ranges=self.get_ranges())
            weights = data.get_weights(params)
            H, H2 = data.get_histogram(self.edges, weights=weights)
            ## scaled by factors (in counts)
            norm = seconds_per_year * params['nyears']
            H *= norm
            H2 *= norm**2

        elif diff:
            ## If injected and seeded are different, build data histogram
            ## library and baseline histograms from the injected param
            lib, bhistos = self.get_baseline_histograms(params)
            ## get template with injected data
            mhisto, temp = self.get_template(params, lib, bhistos)
            H, H2 = temp['H'], temp['H2']

        else:
            ## If none of the above, copy mc template from baseline
            H, H2 = self.template['H'], self.template['H2']

        ## store and print data histogram
        self.dhisto = Map({'H': H, 'H2': H2})
        self._print_rates('data', self.dhisto)
        return self.dhisto
Exemplo n.º 20
0
        def read_nuparams (self):
                ''' Read text file and store information
                
                    :return: a dictionary of user's parameter settings
                '''
                
                params = Map({})
                textfile = open (self._textfile, "r") # open text file

                # loop through each line in the text file
                for line in (raw.strip().split() for raw in textfile):
                        # skip this line if no character or first character is #
                        if not line or line[0][0]=='#': continue
                        pname = line[0]
                        # check cont or disc values to be used
                        values = disc_values if pname in discrete_parameters else cont_values
                        params[pname] = read_param (values, self._isinverted, line)
                
                textfile.close() # close text file
                return params
Exemplo n.º 21
0
        def scale_histos (self, histos, params):

                ''' scale histograms by appropriate factors

                    :param histos (dict): histograms to be scaled
                    :param params (dict): values of floating parameters

                    :return shistos (dict): scaled histograms
                '''

                shistos = Map ({})
                for dtype in histos:
                        ## get the normalization factor
                        key = 'atmmu' if 'muon' in dtype else \
                              'noise' if 'noise' in dtype else 'numu'
                        norm = params['norm_nutau'] if 'nutau' in dtype else \
                               params['norm_nc'] if 'nc' in dtype else 1.
                        norm *= params['norm_'+key]*seconds_per_year*params['nyears']
                        ## scale this histogram
                        shistos[dtype] = {'H' : histos[dtype]['H'] * norm,
                                          'H2': histos[dtype]['H2'] * norm**2}
                return shistos
Exemplo n.º 22
0
def get_histos(params, filenames):
    ''' get a set of histograms with either lower
        or upper sigmas

        :type  params: list
        :param params: a list of parameter names

        :type  sigma: list
        :param sigma: a list of filenames with histograms

        :return results: dictionary
                results: cascade and track chi / percentage
                         {'param': {'cascade':[], 'track':[]} }
    '''

    results = Map({})

    for param in params:
        logger.info('####   -- {0}'.format(param))
        filename = [filename for filename in filenames if param in filename]
        ### check filename length; must be 1.
        if not len(filename) == 1:
            message = 'histoeffect:get_histos :: ' + param + \
                      ' has a file length of '+str (len (filename))
            raise InvalidArguments(message)
        ### get histograms
        with open(filename[0], 'rb') as f:
            histo = cPickle.load(f)
        f.close()
        histo = cPickle.loads(histo)
        ### calculate comparisons in cascade/track
        results[param] = compare(histo.template, histo.dhisto)
    edges = {
        'x': np.log10(histo.edges['e']),
        'y': np.cos(histo.edges['z'])[::-1]
    }
    logger.info('#### ')
    return results, edges
Exemplo n.º 23
0
    def _collect_sys_members(self, dtype, hparam, default, has_bulkice):
        ''' collect all set members for a specific data type
                    and a specific discrete parameter

                    :type     hparam: a string
                    :param    hparam: name of the discrete systematics

                    :type      dtype: a string
                    :param     dtype: name of the data type

                    :type    default: a dictionary
                    :param   default: keys/default values of discrete systematics

                    :type    has_bulkice: a boolean
                    :param   has_bulkice: if True, include bulk ice off axis points

                    :return  members: a Map object
                             members: 99contains all members objects
                '''

        set_members = Map({})
        sets = get_sets(dtype, hparam, has_bulkice=has_bulkice)
        for s in sets:
            setid, setvalues = self._get_setvalues(s, dtype, hparam, default)
            isdef = self._check_setid(setid, default)
            ## don't waste time if it is the default set and already stored
            if setid in set_members:
                if not defid == setid:
                    message = 'Library:'+fname+' : WARNING : setid (' + \
                              setid + ') already exist in the dictionary !'
                    print('{0}'.format(message))
                continue
            set_members[setid] = Member(dtype,
                                        self._pdictpath,
                                        ranges=self._ranges,
                                        baseline=False,
                                        sysvalues=setvalues)
        return set_members
Exemplo n.º 24
0
    def __init__ (self, dhisto, method, verbose=1):

        ''' initialize likelihood object
        
            :type  dhisto: dictionary
            :param dhisto: data histogram {'H':[], 'H2':[]}

            :type  method: string
            :param method: 'barlow', 'poisson', 'chi2', 'modchi2'

            :type  verbose: int
            :param verbose: If 0, no print out
                            If 1, basic print out
                            If 4, detailed print out per bin
        '''
        
        self._dhisto = dhisto
        self._method = method
        self._verbose = verbose

        self._shape, self._nbins = self._set_params ()
        self._dhisto = Map ({ 'H':self._dhisto.H.flatten (),
                              'H2':self._dhisto.H2.flatten () })
Exemplo n.º 25
0
        def merge_nunc (self, dtype, histos, ncdtypes):

                ''' merge all nc members into one histogram

                    :param dtype    (str)  : name of this data type
                    :param histos   (`Map`): histograms of all discrete
                                             sets from all dtypes
                    :param ncdtypes (list) : names of all NC members

                    :return nchistos (`Map`): merged NC histograms
                '''
                
                ## return if not nunc
                if not 'nc' in dtype: return histos[dtype]

                ## massage nc
                nchistos = Map ({})
                for setid in histos[ncdtypes[0]]:
                        nchistos[setid] = {'H': sum ([ histos[ncdtype][setid]['H']
                                                       for ncdtype in ncdtypes ]),
                                           'H2': sum ([ histos[ncdtype][setid]['H2']
                                                        for ncdtype in ncdtypes ]) }
                return nchistos
Exemplo n.º 26
0
###########################################
#### start fitter
###########################################
start_time = time.time()

## perform fit
fit = Fitter(nuparams, params, lib, LH, temp, fparams=fparams, verbose=verbose)

## dump output
output = {
    'bints': fit.bestfit.ts,
    'ts': fit.results.fval,
    'params': convert_to_dict(fit.results.values),
    'errors': convert_to_dict(fit.results.errors),
    'histos': Map({
        'H': fit.bestfit.H,
        'H2': fit.bestfit.H2
    }),
    'barlow_As': fit.barlow_As
}

with open(outfile, 'wb') as f:
    cPickle.dump(output, f, protocol=2)
f.close()

## print results if fitter doesn't
if verbose < 4:
    print_result(output)

print('#### fitting takes {0} minuites.'.format(
    (time.time() - start_time) / 60.))
Exemplo n.º 27
0
def read_param (values, isinverted, *args):
        ''' A function to interprete a line defined for a given parameter

            Parameters
            ----------
            :value :list
                   :either cont_values or disc_values
        
            :isinverted :boolean
                        :if true, dm31 is inverted

            :*args      :an array
                        :a split line from nuparam_textfile

            For a continuous param
            ----------------------
            required: [0] : name       ; [1] : seeded; [2] : injected   ;
                      [3] : included   ; [4] : value ; [5] : lower_limit;
                      [6] : upper_limit; [7] : error
            optional: [8] : prior      ; [9] : penalty

            For a discrete param
            --------------------
            required: [0] : name       ; [1] : nu_func ; [2] : mu_func    ;
                      [3] : seeded     ; [4] : injected; [5] : hplaned    ;
                      [6] : included   ; [7] : value   ; [8] : lower_limit;
                      [9] : upper_limit; [10]: error
            optional: [11]: prior      ; [12]: penalty
        
            Returns
            -------
            :pdict :a Map object
                   :a dictionary with user's setting for this parameter

            Note
            ----
            Ordering of parameters and columns in textfile are set to be the same.

            Example
            -------
            In[0]: from misc import read_param, disc_values, cont_values, discrete_parameters
            In[1]: textfile = open ('nuisance_textfiles/nuparams_template.txt', "r")
            In[2]: for line in (raw.strip().split() for raw in textfile):
            -----:      if not line or line[0][0]=='#': continue
            -----:      break
            In[3]: values = disc_values if line[0] in discrete_parameters else cont_values
            In[4]: this_param = read_param (values, True, line)
        '''
        param = Map ({})
        args  = args[0]
        
        ## check length of arguments
        if not (len(args) == len(values) or len(args) == len(values)-2):
                message = 'nuparams:read_param :: ' + args[0] + ' ('+str(len(values)) + \
                          '): unexpected number of arguements (' + str (len(args)) + ')'
                raise InvalidArguments (message)

        ## loop through each arguement
        for index, value in enumerate (values):
                ## skip first column (name)
                #if index==0: continue
                ## skip prior / penalty if not given
                if index in np.arange (len (values))[-2:] and len(args) == len(values)-2: continue
                vname, vtype = value
                setting = args[index] if index==0 or 'func' in vname else f(args[index])
                ## check if type is correct
                if not vtype == type (setting):
                        message = 'nuparams:read_param :: ' + args[0] + ' ' + vname + ' ('+ vtype + \
                                  '): unexpected arguement type (' + type(setting) + ')'
                        raise InvalidArguments (message)
                ## check if correct function name for nu/mu_func
                if 'func' in vname:
                        if not setting in ['linear', 'parabola', 'exp']:
                                message = 'nuparams:read_param :: ' + args[0] + ' ' + vname + \
                                          ': unexpected function name (' + type(setting) + ')'
                                raise InvalidArguments (message)
                ## modify values if inverted
                if isinverted and args[0]=='dm31':
                        if vname in ['seeded', 'injected', 'value', 'lower_limit', 'upper_limit']:
                                setting *= -1.
                ## put into param
                param[vname] = setting
        param['isdiscrete'] = values==disc_values
        ## if inverted, reverse dm31 limit
        if isinverted and args[0]=='dm31':
                limits = (param['lower_limit'], param['upper_limit'])
                param['lower_limit'], param['upper_limit'] = limits[1], limits[0]
        return param