Exemplo n.º 1
0
import numpy as np
import wfdb as wf
import sys
import matplotlib.pyplot as plt
import tensorflow as tf
import os, imageio
from tqdm import tqdm
import mitecg

ECG = mitecg.ReadMitEcg(
    '/Users/chen/Desktop/ecg/www.physionet.org/physiobank/database/mitdb',
    10000, [1, 2, 3, 4, 5], True)
batch_size = 20
HEARTBEATSAMPLES = 250
LABEL = 5
z_dim = 100

X = tf.placeholder(dtype=tf.float32,
                   shape=[None, HEARTBEATSAMPLES, 1],
                   name='X')
y_label = tf.placeholder(dtype=tf.float32,
                         shape=[None, HEARTBEATSAMPLES, LABEL],
                         name='y_label')
noise = tf.placeholder(dtype=tf.float32, shape=[None, z_dim], name='noise')
y_noise = tf.placeholder(dtype=tf.float32, shape=[None, LABEL], name='y_noise')
is_training = tf.placeholder(dtype=tf.bool, name='is_training')


def lrelu(x, leak=0.2):
    return tf.maximum(x, leak * x)
Exemplo n.º 2
0
import numpy as np
import wfdb as wf
import sys
import matplotlib.pyplot as plt
import tensorflow as tf
import os, imageio
from tqdm import tqdm
import mitecg
from scipy.fftpack import fft, ifft
import seaborn

SCALEDSAMPLES = 50

ECG = mitecg.ReadMitEcg(
    '/Users/chen/Desktop/Research/ecg/www.physionet.org/physiobank/database/mitdb',
    10000, [1, 2, 3, 4, 5],
    False,
    SCALEDSAMPLES=SCALEDSAMPLES)

sampleArray = ECG.oneEcgWithHeartBeatScaled()

x = np.linspace(0, 1, sampleArray.size)

yy = fft(sampleArray)
yreal = yy.real
yimag = yy.imag

yf = abs(yy)
yf1 = abs(yy) / len(x)
yf2 = yf1[range(int(len(x) / 2))]
Exemplo n.º 3
0
import tensorflow as tf
import os, imageio
from tqdm import tqdm
import mitecg
import argparse

parser = argparse.ArgumentParser()
parser.add_argument("datapath", help="directory to the mit ecg database")
args = parser.parse_args()

batch_size = 250
HEARTBEATSAMPLES = 50
LABEL = 5
z_dim = 100
ECG = mitecg.ReadMitEcg(args.datapath,
                        10000, [1, 2, 3, 4, 5],
                        True,
                        SCALEDSAMPLES=HEARTBEATSAMPLES)

X = tf.placeholder(dtype=tf.float32,
                   shape=[None, HEARTBEATSAMPLES, 1],
                   name='X')
y_label = tf.placeholder(dtype=tf.float32,
                         shape=[None, HEARTBEATSAMPLES, LABEL],
                         name='y_label')
noise = tf.placeholder(dtype=tf.float32, shape=[None, z_dim], name='noise')
y_noise = tf.placeholder(dtype=tf.float32, shape=[None, LABEL], name='y_noise')
is_training = tf.placeholder(dtype=tf.bool, name='is_training')


def lrelu(x, leak=0.2):
    return tf.maximum(x, leak * x)