Exemplo n.º 1
0
    def test_linear_regression_model(self):
        train_file = FileUtils.path('', 'iris2.csv')
        test_file = FileUtils.path('', 'test_iris.csv')

        iris = pd.read_csv(train_file)
        test_iris = pd.read_csv(test_file)

        instanceOfLR, summary = linearClassifier(iris, test_iris, 4, 0.05, 200)
        instanceOfLR1, summary1 = linearClassifier(iris, test_iris, 4, 0.01,
                                                   500)
        instanceOfLR2, summary2 = linearClassifier(test_iris, iris, 4, 0.1,
                                                   100)

        print(instanceOfLR)
        print(summary)
        x = numpy.array([5.2, 3.5, 1.5, 0.2])
        print(instanceOfLR.predict(x))
        print(instanceOfLR1.numberOfInstance())

        print(instanceOfLR1)
        print(summary1)
        x = numpy.array([5.2, 3.5, 1.4, 0.2])
        print(instanceOfLR1.predict(x))
        print(instanceOfLR1.numberOfInstance())

        print(instanceOfLR2)
        print(summary2)
        x = numpy.array([5.2, 3.5, 1.6, 0.2])
        print(instanceOfLR2.predict(x))
        print(instanceOfLR2.numberOfInstance())
Exemplo n.º 2
0
def display_data(value):
    """Displaying the head for the selected file."""
    db_value = db.get("file")
    if value is None and db_value is None:
        return ""
    elif value is None and not db_value is None:
        value = db_value
    elif not value == db_value:
        db.reset()
    format = FileUtils.file_format(value)
    if format == 'csv' or format == 'txt':
        path = FileUtils.path('raw', value)
        head = DataUtils.read_text_head(path)
        table_col = [html.Col(style = {'width':"10%"}), html.Col(style = {'width':"90%"})]
        table_header = [html.Thead(html.Tr([html.Th("Row No"), html.Th("Data")]))]
        rows = []
        for i in range(len(head)):
            row = html.Tr([html.Td(i+1), html.Td(head[i])])
            rows.append(row)
        table_body = [html.Tbody(rows)]
        table = dbc.Table(table_col+ table_header + table_body, bordered=True, style = common.table_style)
        div =  [common.msg("Selected File: " + value),
                common.msg("Selected Format: " + format),
                table,
                html.Br(),
                csv_properties_div]
    elif format == 'jpeg' or format == 'jpg' or format == 'gif':
        div =  [common.msg("Selected File: " + value),
                common.msg("Selected Format: " + format)]
    else:
        div = "Format Not Supported!!"
    db.put("file", value)
    db.put("format", format)
    return div
Exemplo n.º 3
0
def upload_data(contents, filename):
    """Upload Files and Regenerate the file list."""
    if contents:
        for i in range(len(filename)):
            FileUtils.upload(filename[i], contents[i])
    files = FileUtils.files('raw')
    if len(files) == 0:
        options = [{'label': 'No files uploaded yet!', 'value': 'None'}]
        return options
    else:
        options = [{'label': file, 'value': file} for file in files]
        return options
Exemplo n.º 4
0
 def read(dir: str, filename: str):
     format = FileUtils.file_format(filename)
     path = FileUtils.path(dir, filename)
     op = None
     if format == 'csv' or format == 'txt':
         with open(path) as myfile:
             head = [next(myfile).strip() for x in range(N)]
         op = head
     elif format == 'jpeg' or format == 'jpg' or format == 'gif':
         ""
     else:
         op = "Format Not Supported!!"
     return op
Exemplo n.º 5
0
    def test_image_recog_eight(self):
        img_path = FileUtils.path('images', 'eight.png')

        net = DigitNeuralNet1HiddenLayer(784, 100, 10)
        net.load()
        q = net.predict(img_path)
        self.assertEqual(q, 3)
Exemplo n.º 6
0
    def load(self):
        dir = os.path.join('nets', 'digit_1_hidden_layer')
        params_file_path = FileUtils.path(dir, 'params.json')
        con_mat_file_path = FileUtils.path(dir, 'con_mat.json')
        wih_file_path = FileUtils.path(dir, 'wih.csv')
        who_file_path = FileUtils.path(dir, 'who.csv')

        out_param_file = open(params_file_path)
        self.params = json.load(out_param_file)
        out_param_file.close()
        out_con_file = open(con_mat_file_path)
        self.con_mat = json.load(out_con_file)
        out_con_file.close()
        self.wih = loadtxt(wih_file_path, delimiter=',')
        self.who = loadtxt(who_file_path, delimiter=',')
        pass
Exemplo n.º 7
0
def apply_file_properties(n):
    file = db.get("file")
    format = db.get("format")
    sep = db.get("file_separator")
    header = db.get("file_header")
    div = None
    if format is None:
        div = None
    elif (format == 'csv' or format == 'txt') and header is None:
        div = common.error_msg('Please Select Header!!')
    elif format == 'csv' or format == 'txt':
        if sep is None:
            sep = ','
            db.put("file_separator", sep)
        path = FileUtils.path('raw', file)
        df = DataUtils.read_csv(path, sep, header)
        db.put("data", df)
        msg = "Following Properties Applied. Separator=" + sep + " Header=" + str(
            header)
        table = dbc.Table.from_dataframe(df.head(10),
                                         striped=True,
                                         bordered=True,
                                         hover=True,
                                         style=common.table_style)
        div = [common.msg(msg), table]
    return div
Exemplo n.º 8
0
 def read_text_head(path: str):
     format = FileUtils.file_format(path)
     op = None
     if format == 'csv' or format == 'txt':
         with open(path) as myfile:
             head = [next(myfile).strip() for x in range(N)]
         op = head
     return op
Exemplo n.º 9
0
def dtn_display_selected_file_scatter_plot(value):
    value = "banknote"
    db.put("dtn.file", value)
    file = value
    path = FileUtils.path('clean', file)
    df = DataUtils.read_csv(path)
    save_path = FileUtils.path('extra', 'banknote.csv')
    df.to_csv(save_path, index=False, header = False)
    db.put("dtn.data", df)

    db.put('dtn.model_class', 'class')
    db.put('dtn.model_variables', ['variance','skewness','curtosis','entropy'])

    call_path = FileUtils.path('nets', 'dt_banknote_call1.csv')
    cdf = DataUtils.read_csv(call_path)

    trace_1 = go.Scatter(x = cdf['max_depth'], y = cdf['avg_train_score'], name = 'Average Train Score')
    trace_2 = go.Scatter(x = cdf['max_depth'], y = cdf['avg_test_score'], name = 'Average Test Score')
    title = go.Layout(title = 'Depth of Tree Vs Performance Plot', hovermode = 'closest', xaxis={'title': 'Depth of Tree'}, yaxis={'title': 'Performance'})
    fig = go.Figure(data = [trace_1, trace_2], layout = title)

    div = html.Div([
        common.msg("Selected cleaned file: "+ file),
        dbc.Table.from_dataframe(df.head(10).round(5).astype(str), striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        html.H2('Using Default parameters for both max_depth and min_size.'),
        html.H2('Max Depth = 2 to 15'),
        html.H2('Min Size = 10'),
        dbc.Table.from_dataframe(cdf.round(4), striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        dcc.Graph(id='dtn-plot', figure=fig),
        html.Br(),
        get_dtn_model_properties_div(df),
        dcc.Loading(id="dtn-model-training",
            children=[html.Div([], id = "dtn-trained-model", style = {'margin': '10px'})],
            type="default"),
    ])

    return div
Exemplo n.º 10
0
    def save(self):
        dir = os.path.join('nets', 'digit_2_hidden_layer')
        FileUtils.mkdir(dir)
        params_file_path =  FileUtils.path(dir, 'params.json')
        con_mat_file_path =  FileUtils.path(dir, 'con_mat.json')
        wih_file_path =  FileUtils.path(dir, 'wih.csv')
        whh_file_path =  FileUtils.path(dir, 'whh.csv')
        who_file_path =  FileUtils.path(dir, 'who.csv')

        out_param_file = open(params_file_path, "w")
        json.dump(self.params, out_param_file)
        out_param_file.close()
        out_con_file = open(con_mat_file_path, "w")
        json.dump(self.con_mat, out_con_file)
        out_con_file.close()
        savetxt(wih_file_path, self.wih, delimiter=',')
        savetxt(whh_file_path, self.whh2, delimiter=',')
        savetxt(who_file_path, self.who, delimiter=',')
        pass
Exemplo n.º 11
0
def dtn_model_train(n_clicks):
    c = db.get('dtn.model_class')
    var = db.get('dtn.model_variables')
    max_depth = db.get('dtn.max_depth')
    min_size = db.get('dtn.min_size')
    folds = 5
    if c is None or var is None or max_depth is None or min_size is None:
        div = ""
    elif (not c is None) and (not var is None) and (not max_depth is None) and (not min_size is None):
        try:
            path = FileUtils.path('extra', 'banknote.csv')

            tree, avg_score, avg_f1_score = train(path, max_depth, min_size, folds)

            summary = {}
            summary['Max Depth'] = max_depth
            summary['Min Size'] = min_size
            summary['Folds'] = folds
            summary['Average Score'] = round(avg_score, 4)
            summary['Average F1 Score'] = round(avg_f1_score, 4)
            summary_df = pd.DataFrame(summary.items(), columns=['Parameters', 'Value'])

            db.put('dtn.model_summary', summary)
            db.put('dtn.model_instance', tree)
        except Exception as e:
            traceback.print_exc()
            return common.error_msg("Exception during training model: " + str(e))

        div = html.Div([
            html.H2('Model Parameters & Summary:'),
            dbc.Table.from_dataframe(summary_df, striped=True, bordered=True, hover=True, style = common.table_style),
            html.Br(),
            html.H2('Tree'),
            html.H2(str(tree)),
            ])
    else:
        div = common.error_msg('Select Proper Model Parameters!!')
    return div
Exemplo n.º 12
0
def dt_display_selected_file_scatter_plot(value):
    db_value = db.get("dt.file")
    if value is None and db_value is None:
        return common.msg("Please select a cleaned file to proceed!!")
    elif value is None and not db_value is None:
        value = db_value

    db.put("dt.file", value)
    file = value
    path = FileUtils.path('clean', file)
    df = DataUtils.read_csv(path)
    db.put("dt.data", df)

    div = html.Div([
        common.msg("Selected cleaned file: "+ file),
        dbc.Table.from_dataframe(df.head(10).astype(str), striped=True, bordered=True, hover=True, style = common.table_style),
        #html.Div([html.H3("Data Statistics")], style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}),
        #dbc.Table.from_dataframe(stats, striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        get_dt_model_properties_div(df),
        html.Div([], id = "dt-trained-model", style = {'margin': '10px'}),
    ])

    return div
Exemplo n.º 13
0
def upload_data(contents, filename):
    """Upload Files and Regenerate the file list."""
    if contents:
        for i in range(len(filename)):
            FileUtils.upload(filename[i], contents[i])
    return common.get_options('raw')
def nlcl_display_selected_file_scatter_plot(value):
    db_value = db.get("nlcl.file")
    if value is None and db_value is None:
        return common.msg("Please select a cleaned file to proceed!!")
    elif value is None and not db_value is None:
        value = db_value

    db.put("nlcl.file", value)
    file = value
    path = FileUtils.path('clean', file)
    df = DataUtils.read_csv(path)
    db.put("nlcl.data", df)

    stats = df.describe(include = 'all').head(6).round(5)
    stats.insert(loc=0, column='Statistics', value=['Count','unique','top','freq','Mean','Standard Deviation'])
    stats = stats.drop(stats.index[[1,2,3]])

    div = html.Div([
        common.msg("Selected cleaned file: "+ file),
        dbc.Table.from_dataframe(df.head(10), striped=True, bordered=True, hover=True, style = common.table_style),
        html.Div([html.H3("Data Statistics")], style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}),
        dbc.Table.from_dataframe(stats, striped=True, bordered=True, hover=True, style = common.table_style),
        html.Br(),
        html.Div([html.H2("Scatter Plot")], style={'width': '100%', 'display': 'flex', 'align-items': 'center', 'justify-content': 'center'}),
        dbc.Row([
            dbc.Col([
                dbc.Label("Select Class"),
                dcc.Dropdown(
                    id = 'nlcl-class',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Label("Select X Axis"),
                dcc.Dropdown(
                    id = 'nlcl-x-axis',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Label("Select Y Axis"),
                dcc.Dropdown(
                    id = 'nlcl-y-axis',
                    options=[{'label':col, 'value':col} for col in [*df]],
                    value=None,
                    multi=False
                ),
                html.Br(),
                dbc.Button("Plot", color="primary", id = 'nlcl-scatter-plot-button'),
                html.Div([], id = "nlcl-class-do-nothing"),
                html.Div([], id = "nlcl-x-axis-do-nothing"),
                html.Div([], id = "nlcl-y-axis-do-nothing")
            ], md=2,
            style = {'margin': '10px', 'font-size': '16px'}),
            dbc.Col([], md=9, id="nlcl-scatter-plot")
        ]),
        html.Br(),
        get_nlcl_model_properties_div(df),
        html.Div([], id = "nlcl-trained-model", style = {'margin': '10px'}),
    ])

    return div
#################################
# This has to be added to find the custom packages
import sys
import os

sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)) + '/../../')
#################################

import zipfile
from ml.neural_net.digit_recog_1_layer import DigitNeuralNet1HiddenLayer
from ml.framework.file_utils import FileUtils

train_data_zip_path = FileUtils.path('', 'mnist_train.csv.zip')
directory_to_extract_to = FileUtils.path('extra', '')

with zipfile.ZipFile(train_data_zip_path, 'r') as zip_ref:
    zip_ref.extractall(directory_to_extract_to)

test_data_zip_path = FileUtils.path('', 'mnist_test.csv.zip')
with zipfile.ZipFile(test_data_zip_path, 'r') as zip_ref:
    zip_ref.extractall(directory_to_extract_to)

#Neural Net Training
input_nodes = 784
hidden_nodes = 100
output_nodes = 10
learning_rate = 0.1
epoch = 5

train_data_path = FileUtils.path('extra', 'mnist_train.csv')
test_data_path = FileUtils.path('extra', 'mnist_test.csv')
Exemplo n.º 16
0
"""App Main

python3 app_main
"""
import os
from ml.framework.file_utils import FileUtils
FileUtils.mkdir('raw')
FileUtils.mkdir('clean')
FileUtils.mkdir('knn')
from ml.ux import index

if __name__ == '__main__':
    ""
Exemplo n.º 17
0
"""App Main

python3 app_main
"""
import os
from ml.framework.file_utils import FileUtils
FileUtils.mkdir('raw')
from ml.ux import index

if __name__ == '__main__':
    ""
Exemplo n.º 18
0
            'width': '50%',
            'height': '50px',
            'lineHeight': '50px',
            'borderWidth': '1px',
            'borderStyle': 'dashed',
            'borderRadius': '5px',
            'textAlign': 'center',
            'margin': '10px'
        },
        multiple=True),
        html.Br(),
        html.Div([
            html.H2("Select a file from all the uploaded files:"),
            dcc.Dropdown(
                id = 'selected-file',
                options=[{'label':file, 'value':file} for file in FileUtils.files('raw')],
                value=None,
                multi=False
            ),
            html.Br(),
        ],
        style = {'margin': '10px', 'width': '50%'}),
        html.Div([], id = "display-file"),
        html.Div([], id = "file-properties"),
        html.Div([], id = "file-separator-do-nothing"),
        html.Div([], id = "file-header-do-nothing")
])

@app.callback(
    Output("selected-file", "options"),
    [Input('upload-data', 'contents'),
Exemplo n.º 19
0
                   'lineHeight': '50px',
                   'borderWidth': '1px',
                   'borderStyle': 'dashed',
                   'borderRadius': '5px',
                   'textAlign': 'center',
                   'margin': '10px'
               },
               multiple=True),
    html.Br(),
    html.Div([
        html.H2("Select a file from all the uploaded files:"),
        dcc.Dropdown(id='selected-file',
                     options=[{
                         'label': file,
                         'value': file
                     } for file in FileUtils.files('raw')],
                     value=None,
                     multi=False),
        html.Br(),
    ],
             style={
                 'margin': '10px',
                 'width': '50%'
             }),
    html.Div([], id="display-file"),
    html.Div([], id="file-properties"),
    html.Div([], id="file-separator-do-nothing"),
    html.Div([], id="file-header-do-nothing")
])

Exemplo n.º 20
0
def get_options(dir: str):
    files = FileUtils.files(dir)
    if len(files) == 0:
        return [{'label': 'No files yet!', 'value': 'None'}]
    else:
        return [{'label': file, 'value': file} for file in files]