Exemplo n.º 1
0
def main(*,
         data_file_path: str,
         ground_truth_path: str,
         output_path: str = None,
         train_size: ('train_size', multi(min=0)),
         val_size: float = 0.1,
         stratified: bool = True,
         background_label: int = 0,
         channels_idx: int = 0,
         save_data: bool = False,
         seed: int = 0):
    """
    :param data_file_path: Path to the data file. Supported types are: .npy
    :param ground_truth_path: Path to the data file.
    :param output_path: Path under in which the output .h5 file will be stored.
        Used only if the parameter save_data is set to True
    :param train_size: If float, should be between 0.0 and 1.0,
                        if stratified = True, it represents percentage of each
                        class to be extracted,
                 If float and stratified = False, it represents percentage of the
                    whole dataset to be extracted with samples drawn randomly,
                    regardless of their class.
                 If int and stratified = True, it represents number of samples
                    to be drawn from each class.
                 If int and stratified = False, it represents overall number of
                    samples to be drawn regardless of their class, randomly.
                 Defaults to 0.8
    :type train_size: float or int
    :param val_size: Should be between 0.0 and 1.0. Represents the percentage of
                     each class from the training set to be extracted as a
                     validation set, defaults to 0.1
    :param stratified: Indicated whether the extracted training set should be
                     stratified, defaults to True
    :param background_label: Label indicating the background in GT file
    :param channels_idx: Index specifying the channels position in the provided
                         data
    :param save_data: Whether to save data as .md5 or to return it as a dict
    :param seed: Seed used for data shuffling
    :raises TypeError: When provided data or labels file is not supported
    """
    train_size = utils.parse_train_size(train_size)
    if data_file_path.endswith('.npy') and ground_truth_path.endswith('.npy'):
        data, labels = io.load_npy(data_file_path, ground_truth_path)
        data, labels = preprocessing.reshape_cube_to_2d_samples(
            data, labels, channels_idx)
    elif data_file_path.endswith('.h5') and ground_truth_path.endswith(
            '.tiff'):
        data, gt_transform_mat = io.load_satellite_h5(data_file_path)
        labels = io.load_tiff(ground_truth_path)
        data_2d_shape = data.shape[1:]
        labels = preprocessing.align_ground_truth(data_2d_shape, labels,
                                                  gt_transform_mat)
        data, labels = preprocessing.reshape_cube_to_2d_samples(
            data, labels, channels_idx)
        data, labels = preprocessing.remove_nan_samples(data, labels)
    else:
        raise ValueError(
            "The following data file type is not supported: {}".format(
                os.path.splitext(data_file_path)[EXTENSION]))

    data = data[labels != background_label]
    labels = labels[labels != background_label]
    labels = preprocessing.normalize_labels(labels)
    train_x, train_y, val_x, val_y, test_x, test_y = \
        preprocessing.train_val_test_split(data, labels, train_size, val_size,
                                           stratified, seed=seed)

    if save_data:
        io.save_md5(output_path, train_x, train_y, val_x, val_y, test_x,
                    test_y)
        return None
    else:
        return utils.build_data_dict(train_x, train_y, val_x, val_y, test_x,
                                     test_y)
Exemplo n.º 2
0
 def test_if_sets_overlap(self, ):
     data = np.arange(30)
     train_x, train_y, val_x, val_y, test_x, test_y = preprocessing.train_val_test_split(
         data, self.labels, 0.5, stratified=False)
     assert not np.any(np.equal(train_x, test_x))
Exemplo n.º 3
0
 def test_if_sets_have_correct_length(self, data, labels, train_size,
                                      result):
     train_x, train_y, val_x, val_y, test_x, test_y = preprocessing.train_val_test_split(
         data, labels, train_size)
     assert len(train_x) == result[0] and len(val_x) == result[1] and len(
         test_x) == result[2]
Exemplo n.º 4
0
 def test_if_x_and_y_have_same_length(self, data, labels, train_size,
                                      result):
     train_x, train_y, val_x, val_y, test_x, test_y = preprocessing.train_val_test_split(
         data, labels, train_size)
     assert len(train_x) == len(train_y) and len(val_x) == len(
         val_y) and len(test_x) == len(test_y)