def __init__(self, sigma = 0.2, _lambda = np.exp(-15), Nadd = 150, output = 0, maxIter = np.inf, epsilon = 0.001, delta_k = 1, tempInt = 0.95, epsilon_back = 0.001, flyComputeK = 0, deselect = 0, CV = None, lambdas = np.r_[[np.exp(-12)], np.exp(np.arange(-10,-3))], sigmas = np.sqrt(1. / (2. * 2.**np.arange(-5, 3)))): self.sigma = sigma self._lambda = _lambda self.Nadd = Nadd self.output = output self.maxIter = maxIter self.epsilon = epsilon self.delta_k = delta_k self.tempInt = tempInt self.epsilon_back = epsilon_back self.flyComputeK = flyComputeK self.deselect = deselect self.CV = CV self.lambdas = lambdas self.sigmas = sigmas this_dir, this_filename = os.path.split(__file__) src_dir = os.path.join(this_dir, "ivmSoftware4.3/src") mlab.addpath(src_dir)
def load_matlab(): """ Imports and starts matlab bridge if not started. """ global mlab global MatlabError from mlabwrap import mlab from mlabraw import error as MatlabError abspath = os.path.abspath(__file__) features = os.path.join(os.path.dirname(os.path.dirname(abspath)), "features") toolbox = os.path.join(features, "matlab-chroma-toolbox") mlab.addpath(toolbox)
import os import sys import numpy as np from mlabwrap import mlab import scikits.audiolab as AUDIOLAB # makes sure we have the right matlab files # save their absolute path _code_dir = os.path.dirname(__file__) _find_landmarks_path = os.path.join(os.path.abspath(_code_dir), "find_landmarks.m") if not os.path.exists(_find_landmarks_path): print "can't find find_lanmarks.m, not same place as get_landmarks?" print "get_landmarks.py dir:", _code_dir raise ImportError mlab.addpath(_code_dir) def wavread(path): """ Wrapper around scikits functions Returns: wavdata, sample rate, encoding type See pyaudiolab or scikits.audiolab for more information """ return AUDIOLAB.wavread(path) def find_landmarks_from_wav(wavpath): """ utility function, open wav, calls find_landmarks """
import scipy as sp import scipy.io import plca from string import lower import csv logging.basicConfig(level=logging.INFO, format='%(levelname)s %(name)s %(asctime)s ' '%(filename)s:%(lineno)d %(message)s') logger = logging.getLogger('segmenter') try: from mlabwrap import mlab mlab.addpath('coversongs') except: logger.warning('Unable to import mlab module. Feature extraction ' 'and evaluation will not work.') def extract_features(wavfilename, fctr=400, fsd=1.0, type=1): """Computes beat-synchronous chroma features from the given wave file Calls Dan Ellis' chrombeatftrs Matlab function. """ if lower(wavfilename[-4:]) == '.csv': logger.info('CSV filename reading preprocessed features from %s', wavfilename) csvr = csv.reader(open(wavfilename, 'rb'), delimiter=',') feats = np.array([[float(x) for x in row] for row in csvr])
""" import os import sys import tempfile import numpy as np # MATLAB wrapper, we remove the dperecation warnings import warnings warnings.filterwarnings('ignore',category=DeprecationWarning) from mlabwrap import mlab warnings.filterwarnings('default',category=DeprecationWarning) # kalman toolbox path kal_toolbox_path = '/home/thierry/Columbia/Imputation/PythonSrc/KalmanAll' mlab.warning('off','all') # hack, remove warnings # some functions are redefined but who cares! mlab.addpath(kal_toolbox_path) mlab.addpath(os.path.join(kal_toolbox_path,'Kalman')) mlab.addpath(os.path.join(kal_toolbox_path,'KPMstats')) mlab.addpath(os.path.join(kal_toolbox_path,'KPMtools')) mlab.warning('on','all') def learn_kalman(data,A,C,Q,R,initx,initV,niter,diagQ=1,diagR=1): """ Main function, take initial parameters and train a Kalman filter. We assume a model: x(t+1) = A*x(t) + w(t), w ~ N(0, Q), x(0) ~ N(init_x, init_V) y(t) = C*x(t) + v(t), v ~ N(0, R) INPUT data - one sequence, one observation per col A - DxD matrix, D dimension of hidden state
# --------------------------------------------------------------------------- # # example.py # Tarik Tosun, 2012-07-19 # Description: # Demonstrates what you can do with python-retargeter. # --------------------------------------------------------------------------- # import numpy as np import scipy as sp from mlabwrap import mlab # when mlabwrap is imported, it starts an instance of matlab which runs in the # background. Nearly any matlab function may be called as: 'mlab.[function]' mlab.addpath(mlab.genpath('../minimal')) # ----------------------------------------------------------- # # Creating Kinematic Chain Models: # ----------------------------------------------------------- # # pr2larm(length_total) returns a simulated PR2 left arm of specified total # length. (pr2rarm returns a simulated PR2 right arm.) # Degrees of freedom: # [shoulder_yaw, shoulder_tilt, shoulder_roll, elbow_flex] L = 300 pr2 = mlab.pr2rarm(L) # human24(lengths) returns a 2-link, 4-dof chain similar to a human arm. the # lengths vector specifies link lengths. # Degrees of freedom: # [shoulder_roll, shoulder_yaw, shoulder_pitch, elbow_pitch]
from mlabwrap import mlab as matlab # give an interface to the mlab system through cobra.matlab cobra.matlab = matlab matlab.__doc__ = """ This is an mlabwrap connection to MATLAB which can be used to call MATLAB functions. For example, if model is a python model, the following can be used to optimize the model in MATLAB: > matlab_model = cobra.mlab.cobra_model_object_to_cobra_matlab_struct(model) > result = cobra.matlab.optimizeCbModel(matlab_model) Any MATLAB function can be called this way""" # add path with module's python scripts to the MATLAB path mlab_path = os.path.join(cobra.__path__[0], 'mlab', 'matlab_scripts') matlab.addpath(mlab_path) _possible_cobra_locations = ["~/MATLAB/cobra", "~/cobra", "~/Documents/MATLAB/cobra", "~/Documents/opencobra/matlab/cobra"] def init_matlab_toolbox(matlab_cobra_path=None, discover_functions=True): """initialize the matlab cobra toolbox, and load its functions into mlab's namespace (very useful for ipython tab completion) matlab_cobra_path: the path to the directory containing the MATLAB cobra installation. Using the default None will attempt to find the toolbox in the MATLAB path discover_functions: Whether mlabwrap should autodiscover all cobra toolbox functions in matlab. This is convenient for tab completion, but may take some time."""
except ImportError: print 'Unable to import mlab module. Attempting to install...' os.system('cd %s; python setup.py build' % MLABWRAPDIR) basedir = '%s/build/' % MLABWRAPDIR sys.path.extend([os.path.join(basedir, x) for x in os.listdir(basedir) if x.startswith('lib')]) from mlabwrap import mlab try: mlab.sin(1) except: # Re-initialize the broken connection to the Matlab engine. import mlabraw mlab._session = mlabraw.open() mlab.addpath(os.path.join(CURRDIR, 'coversongs')) def extract_features(track, fctr=400, fsd=1.0, type=1): """Computes beat-synchronous chroma features. Uses Dan Ellis' chrombeatftrs Matlab function (via the mlabwrap module, which is included with this feature extractor). See http://labrosa.ee.columbia.edu/projects/coversongs for more details. Parameters ---------- track : gordon Track instance fctr : float
import os import sys import numpy as np import scipy as sp import scipy.io import plca logging.basicConfig(level=logging.INFO) logger = logging.getLogger("segmenter") try: from mlabwrap import mlab mlab.addpath("coversongs") except: logger.warning("Unable to import mlab module. Feature extraction " "and evaluation will not work.") def extract_features(wavfilename, fctr=400, fsd=1.0, type=1): """Computes beat-synchronous chroma features from the given wave file Calls Dan Ellis' chrombeatftrs Matlab function. """ x, fs = mlab.wavread(wavfilename, nout=2) feats, beats = mlab.chrombeatftrs(x, fs, fctr, fsd, type, nout=2) return feats, beats.flatten() def segment_song(
Also, can use codebook encoding. T. Bertin-Mahieux (2010) Columbia University [email protected] """ import os import sys import glob import numpy as np import scipy.io as sio rondir = 'ronwsiplca' from ronwsiplca import segmenter as SEGMENTER from mlabwrap import mlab mlab.addpath(os.path.abspath(rondir)) mlab.addpath(os.path.abspath('.')) # beatles directories on my machines (TBM) _enfeats_dir = os.path.expanduser('~/Columbia/InfiniteListener/beatles_enbeatfeats') _audio_dir = os.path.expanduser('~/Columbia/InfiniteListener/beatles_audio') _seglab_dir = os.path.expanduser('~/Columbia/InfiniteListener/beatles_seglab') def get_all_files(basedir,pattern='*.wav') : """ From a root directory, go through all subdirectories and find all files that fit the pattern. Return them in a list. """ allfiles = [] for root, dirs, files in os.walk(basedir):
from mlabwrap import mlab import pycuda.autoinit import pycuda.driver as drv import numpy from pycuda.compiler import SourceModule mlab.addpath('../FasihSarStuff/', nout=0) # Params clight = 299792458.0 block_width = 16 block_height = 16 # Matlab data loading data = mlab.helper3DSAR() #data = mlab.helperMTI() data = mlab.rangeCompress(data) mdouble = mlab.double; do = lambda x: float(mdouble(x)[0,0]) nint = numpy.int32 nfloat = numpy.float32 rp = mdouble(data.upsampled_range_profiles) im = numpy.zeros_like(data.im_final).astype(numpy.complex64) [Nimg_height, Nimg_width] = im.shape delta_pixel_x = numpy.diff(data.x_vec)[0,0] delta_pixel_y = numpy.diff(data.y_vec)[0,0] c__4_deltaF = clight / (4.0 * do(data.deltaF))