Exemplo n.º 1
0
def minimise_energy_all_confs(mol, models = None, epsilon = 4, allow_undefined_stereo = True, **kwargs ):
    from simtk import unit
    from simtk.openmm import LangevinIntegrator
    from simtk.openmm.app import Simulation, HBonds, NoCutoff
    from rdkit import Chem
    from rdkit.Geometry import Point3D
    import mlddec
    import copy
    import tqdm
    mol = Chem.AddHs(mol, addCoords = True)

    if models is None:
        models  = mlddec.load_models(epsilon)
    charges = mlddec.get_charges(mol, models)

    from openforcefield.utils.toolkits import RDKitToolkitWrapper, ToolkitRegistry
    from openforcefield.topology import Molecule, Topology
    from openforcefield.typing.engines.smirnoff import ForceField
    # from openforcefield.typing.engines.smirnoff.forcefield import PME

    import parmed
    import numpy as np

    forcefield = ForceField(get_data_filename("modified_smirnoff99Frosst.offxml")) #FIXME better way of identifying file location

    tmp = copy.deepcopy(mol)
    tmp.RemoveAllConformers() #XXX workround for speed beacuse seemingly openforcefield records all conformer informations, which takes a long time. but I think this is a ill-practice

    molecule = Molecule.from_rdkit(tmp, allow_undefined_stereo = allow_undefined_stereo)
    molecule.partial_charges = unit.Quantity(np.array(charges), unit.elementary_charge)
    topology = Topology.from_molecules(molecule)
    openmm_system = forcefield.create_openmm_system(topology, charge_from_molecules= [molecule])

    structure = parmed.openmm.topsystem.load_topology(topology.to_openmm(), openmm_system)


    system = structure.createSystem(nonbondedMethod=NoCutoff, nonbondedCutoff=1*unit.nanometer, constraints=HBonds)

    integrator = LangevinIntegrator(273*unit.kelvin, 1/unit.picosecond, 0.002*unit.picoseconds)
    simulation = Simulation(structure.topology, system, integrator)

    out_mol = copy.deepcopy(mol)
    for i in tqdm.tqdm(range(out_mol.GetNumConformers())):
        conf = mol.GetConformer(i)
        structure.coordinates =  unit.Quantity(np.array([np.array(conf.GetAtomPosition(i)) for i in range(mol.GetNumAtoms())]), unit.angstroms)

        simulation.context.setPositions(structure.positions)

        simulation.minimizeEnergy()
        # simulation.step(1)

        coords = simulation.context.getState(getPositions = True).getPositions(asNumpy = True).value_in_unit(unit.angstrom)
        conf = out_mol.GetConformer(i)
        for j in range(out_mol.GetNumAtoms()):
            conf.SetAtomPosition(j, Point3D(*coords[j]))

    return out_mol
Exemplo n.º 2
0
    def load_ddec_models(cls, epsilon=4, **kwargs):
        """
        Charging molecule using machine learned charge instead of the default AM1-BCC method.

        Requires first installing the mlddec(https://github.com/rinikerlab/mlddec) package. Parameters are availible for elements : {H,C,N,O,Cl,Br,F}.

        Parameters
        ------------
        epsilon : int
            Dielectric constant to be used, polarity of the resulting molecule varies, possible values are {4,78}.
        """

        try:
            import mlddec
        except ImportError:
            raise ImportError('mlddec not properly installed')

        cls.rf = mlddec.load_models(epsilon)
        # cls.charge_engine = cls._ddec_charger
        cls._ddec_charger = mlddec.get_charges
Exemplo n.º 3
0
from rdkit import Chem
import mlddec

epsilon = 4
models = mlddec.load_models(epsilon)

mol = Chem.MolFromSmiles("N[C@@H](C)CCCC(=O)")
mol = Chem.AddHs(mol)

mlddec.add_charges_to_mol(mol, models)
mlddec.visualize_charges(mol, show_hydrogens=False)