def setUp(self):
        """
        Generate X, y datasets and fit a RF
        """
        #Generate datasets
        self.X, self.y = get_classification_data(10,
                                                 5,
                                                 2,
                                                 1000,
                                                 random_state=0,
                                                 sigma=0)
        # Fit a RF
        self.clf_base = RandomForestClassifier(
            n_estimators=1,
            criterion='entropy',
            bootstrap=False,
            class_weight='balanced_subsample')

        self.bag_clf = BaggingClassifier(base_estimator=self.clf_base,
                                         max_features=1.0,
                                         n_estimators=100,
                                         oob_score=True,
                                         random_state=1)
        self.fit_clf = self.bag_clf.fit(self.X, self.y)
        self.cv_gen = KFold(n_splits=3, random_state=0)
Exemplo n.º 2
0
 def setUp(self):
     """
     Set the file path for the sample dollar bars data.
     """
     state = np.random.RandomState(42)
     self.x = state.normal(size=1000)
     self.y_1 = self.x ** 2 + state.normal(size=1000) / 5
     self.y_2 = abs(self.x) + state.normal(size=1000) / 5
     self.X_matrix, _ = get_classification_data(6, 2, 2, 100, sigma=0)
Exemplo n.º 3
0
 def setUp(self):
     """
     Set the file path for the sample dollar bars data.
     """
     state = np.random.RandomState(42)
     self.x = state.normal(size=1000)
     self.y_1 = self.x**2 + state.normal(size=1000) / 5
     self.y_2 = abs(self.x) + state.normal(size=1000) / 5
     self.y_3 = self.x + state.normal(size=1000) / 5
     self.X_matrix, _ = get_classification_data(6, 2, 2, 100, sigma=0)
     # Setting sample correlation matrices
     self.corr_A = np.array(
         [[1, 0.70573243, 0.03085437, 0.6019651, 0.81214341],
          [0.70573243, 1, 0.03126594, 0.56559443, 0.88961155],
          [0.03085437, 0.03126594, 1, 0.01760481, 0.02842086],
          [0.60196510, 0.56559443, 0.01760481, 1, 0.73827921],
          [0.81214341, 0.88961155, 0.02842086, 0.73827921, 1]])
     self.corr_B = np.array(
         [[1, 0.49805826, 0.00095199, 0.36236198, 0.65957691],
          [0.49805826, 1, 0.00097755, 0.31989705, 0.79140871],
          [0.00095199, 0.00097755, 1, 0.00030992, 0.00080774],
          [0.36236198, 0.31989705, 0.00030992, 1, 0.54505619],
          [0.65957691, 0.79140871, 0.00080774, 0.54505619, 1]])
 def setUp(self):
     """
     Create X, y datasets
     """
     self.X, self.y = get_classification_data(40, 5, 30, 1000, sigma=2)