def main():
    print("-- Gradient Boosting Regression --")

    X, y = datasets.make_regression(n_features=1,
                                    n_samples=150,
                                    bias=0,
                                    noise=5)

    X_train, X_test, y_train, y_test = train_test_split(standardize(X),
                                                        y,
                                                        test_size=0.5)

    clf = GradientBoostingRegressor(debug=True)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    mse = mean_squared_error(y_test, y_pred)

    print("Mean Squared Error:", mse)

    # Plot the results
    plt.scatter(X_test[:, 0], y_test, color='black')
    plt.scatter(X_test[:, 0], y_pred, color='green')
    plt.title("Gradient Boosting Regression (%.2f MSE)" % mse)
    plt.show()
Exemplo n.º 2
0
def main():

    print("-- Classification Tree --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = ClassificationTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print("Accuracy:", accuracy)

    pca = PCA()
    pca.plot_in_2d(X_test,
                   y_pred,
                   title="Decision Tree",
                   accuracy=accuracy,
                   legend_labels=data.target_names)

    print("-- Regression Tree --")

    X, y = datasets.make_regression(n_features=1,
                                    n_samples=100,
                                    bias=0,
                                    noise=5)

    X_train, X_test, y_train, y_test = train_test_split(standardize(X),
                                                        y,
                                                        test_size=0.3)

    clf = RegressionTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    mse = mean_squared_error(y_test, y_pred)

    print("Mean Squared Error:", mse)

    # Plot the results
    plt.scatter(X_test[:, 0], y_test, color='black')
    plt.scatter(X_test[:, 0], y_pred, color='green')
    plt.title("Regression Tree (%.2f MSE)" % mse)
    plt.show()
Exemplo n.º 3
0
def main():

    print("-- Gradient Boosting Classification --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = GradientBoostingClassifier(debug=True)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print("Accuracy:", accuracy)

    Plot().plot_in_2d(X_test,
                      y_pred,
                      title="Gradient Boosting",
                      accuracy=accuracy,
                      legend_labels=data.target_names)

    print("-- Gradient Boosting Regression --")

    X, y = datasets.make_regression(n_features=1,
                                    n_samples=150,
                                    bias=0,
                                    noise=5)

    X_train, X_test, y_train, y_test = train_test_split(standardize(X),
                                                        y,
                                                        test_size=0.5)

    clf = GradientBoostingRegressor(debug=True)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    mse = mean_squared_error(y_test, y_pred)

    print("Mean Squared Error:", mse)

    # Plot the results
    plt.scatter(X_test[:, 0], y_test, color='black')
    plt.scatter(X_test[:, 0], y_pred, color='green')
    plt.title("Gradient Boosting Regression (%.2f MSE)" % mse)
    plt.show()
def main():

    print ("-- Classification Tree --")

    data = datasets.load_iris()
    X = data.data
    y = data.target

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    clf = ClassificationTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    accuracy = accuracy_score(y_test, y_pred)

    print ("Accuracy:", accuracy)

    Plot().plot_in_2d(X_test, y_pred, 
        title="Decision Tree", 
        accuracy=accuracy, 
        legend_labels=data.target_names)

    print ("-- Regression Tree --")

    X, y = datasets.make_regression(n_features=1, n_samples=100, bias=0, noise=5)

    X_train, X_test, y_train, y_test = train_test_split(standardize(X), y, test_size=0.3)

    clf = RegressionTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)


    mse = mean_squared_error(y_test, y_pred)

    print ("Mean Squared Error:", mse)

    # Plot the results
    plt.scatter(X_test[:, 0], y_test, color='black')
    plt.scatter(X_test[:, 0], y_pred, color='green')
    plt.title("Regression Tree (%.2f MSE)" % mse)
    plt.show()
def main():

    # Load temperature data
    data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].as_matrix()).T
    temp = np.atleast_2d(data["temp"].as_matrix()).T

    X = time  # Time. Fraction of the year [0, 1]
    y = temp[:, 0]  # Temperature. Reduce to one-dim

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    n_samples, n_features = np.shape(X)

    clf = LinearRegression()

    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print("Mean squared error: %s" % (mse))

    y_pred_line = clf.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    plt.plot(366 * X,
             y_pred_line,
             color='black',
             linewidth=2,
             label="Prediction")
    plt.suptitle("Polynomial Ridge Regression")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.show()
def main():

    print("-- Regression Tree --")

    # Load temperature data
    data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].as_matrix()).T
    temp = np.atleast_2d(data["temp"].as_matrix()).T

    X = standardize(time)  # Time. Fraction of the year [0, 1]
    y = temp[:, 0]  # Temperature. Reduce to one-dim

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

    clf = RegressionTree()
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    y_pred_line = clf.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    mse = mean_squared_error(y_test, y_pred)

    print("Mean Squared Error:", mse)

    # Plot the results
    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    m3 = plt.scatter(366 * X_test, y_pred, color='black', s=10)
    plt.suptitle("Regression Tree")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2, m3), ("Training data", "Test data", "Prediction"),
               loc='lower right')
    plt.show()
Exemplo n.º 7
0
def main():

    # Load temperature data
    data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].as_matrix()).T
    temp = data["temp"].as_matrix()

    X = time # fraction of the year [0, 1]
    y = temp

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    poly_degree = 11

    # Finding regularization constant using cross validation
    lowest_error = float("inf")
    best_reg_factor = None
    print ("Finding regularization constant using cross validation:")
    k = 10
    for reg_factor in np.arange(0, 0.1, 0.01):
        cross_validation_sets = k_fold_cross_validation_sets(
            X_train, y_train, k=k)
        mse = 0
        for _X_train, _X_test, _y_train, _y_test in cross_validation_sets:
            clf = PolynomialRidgeRegression(degree=poly_degree, 
                                            reg_factor=reg_factor,
                                            learning_rate=0.001,
                                            n_iterations=10000)
            clf.fit(_X_train, _y_train)
            y_pred = clf.predict(_X_test)
            _mse = mean_squared_error(_y_test, y_pred)
            mse += _mse
        mse /= k

        # Print the mean squared error
        print ("\tMean Squared Error: %s (regularization: %s)" % (mse, reg_factor))

        # Save reg. constant that gave lowest error
        if mse < lowest_error:
            best_reg_factor = reg_factor
            lowest_error = mse

    # Make final prediction
    clf = PolynomialRidgeRegression(degree=poly_degree, 
                                    reg_factor=best_reg_factor,
                                    learning_rate=0.001,
                                    n_iterations=10000)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print ("Mean squared error: %s (given by reg. factor: %s)" % (lowest_error, best_reg_factor))

    y_pred_line = clf.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    plt.plot(366 * X, y_pred_line, color='black', linewidth=2, label="Prediction")
    plt.suptitle("Polynomial Ridge Regression")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.show()
Exemplo n.º 8
0
def main():

    # Load temperature data
    data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].as_matrix()).T
    temp = np.atleast_2d(data["temp"].as_matrix()).T

    X = time  # fraction of the year [0, 1]
    y = temp

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    n_samples, n_features = np.shape(X)

    # Prior parameters
    # - Weights are assumed distr. according to a Normal distribution
    # - The variance of the weights are assumed distributed according to
    #   a scaled inverse chi-squared distribution.
    # High prior uncertainty!
    # Normal
    mu0 = np.array([0] * n_features)
    omega0 = np.diag([.0001] * n_features)
    # Scaled inverse chi-squared
    nu0 = 1
    sigma_sq0 = 100

    # The credible interval
    cred_int = 10

    clf = BayesianRegression(n_draws=2000,
                             poly_degree=4,
                             mu0=mu0,
                             omega0=omega0,
                             nu0=nu0,
                             sigma_sq0=sigma_sq0,
                             cred_int=cred_int)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    mse = mean_squared_error(y_test, y_pred)

    # Get prediction line
    y_pred_, y_lower_, y_upper_ = clf.predict(X=X, eti=True)

    # Print the mean squared error
    print("Mean Squared Error:", mse)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    p1 = plt.plot(366 * X,
                  y_pred_,
                  color="black",
                  linewidth=2,
                  label="Prediction")
    p2 = plt.plot(366 * X,
                  y_lower_,
                  color="gray",
                  linewidth=2,
                  label="{0}% Credible Interval".format(cred_int))
    p3 = plt.plot(366 * X, y_upper_, color="gray", linewidth=2)
    plt.axis((0, 366, -20, 25))
    plt.suptitle("Bayesian Regression")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend(loc='lower right')
    # plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.legend(loc='lower right')

    plt.show()
def main():

    # Load temperature data
    data = pd.read_csv('mlfromscratch/data/TempLinkoping2016.txt', sep="\t")

    time = np.atleast_2d(data["time"].values).T
    temp = np.atleast_2d(data["temp"].values).T

    X = time # fraction of the year [0, 1]
    y = temp

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    n_samples, n_features = np.shape(X)

    # Prior parameters
    # - Weights are assumed distr. according to a Normal distribution
    # - The variance of the weights are assumed distributed according to 
    #   a scaled inverse chi-squared distribution.
    # High prior uncertainty!
    # Normal
    mu0 = np.array([0] * n_features)
    omega0 = np.diag([.0001] * n_features)
    # Scaled inverse chi-squared
    nu0 = 1
    sigma_sq0 = 100

    # The credible interval
    cred_int = 10

    clf = BayesianRegression(n_draws=2000, 
        poly_degree=4, 
        mu0=mu0, 
        omega0=omega0, 
        nu0=nu0, 
        sigma_sq0=sigma_sq0,
        cred_int=cred_int)
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    mse = mean_squared_error(y_test, y_pred)

    # Get prediction line
    y_pred_, y_lower_, y_upper_ = clf.predict(X=X, eti=True)

    # Print the mean squared error
    print ("Mean Squared Error:", mse)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    p1 = plt.plot(366 * X, y_pred_, color="black", linewidth=2, label="Prediction")
    p2 = plt.plot(366 * X, y_lower_, color="gray", linewidth=2, label="{0}% Credible Interval".format(cred_int))
    p3 = plt.plot(366 * X, y_upper_, color="gray", linewidth=2)
    plt.axis((0, 366, -20, 25))
    plt.suptitle("Bayesian Regression")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend(loc='lower right')
    # plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.legend(loc='lower right')

    plt.show()