Exemplo n.º 1
0
 def compute_gamma(self,A,E,zz_tn_prev,zz_tn,gamma_tn):
     """
     Replaces the current value of the gamma parameters with 
     its updated value, and returns the mean square difference between the two.
     """
     # This is the main bottleneck of the code.
     # Would be faster if:
     # - implemented in C
     # - roots() was also implemented in C
     d_z = len(gamma_tn)
     product_matrix_matrix(zz_tn_prev,A.T,self.mat_d_z_d_z)
     product_matrix_matrix(A,self.mat_d_z_d_z,self.mat_d_z_d_z2)
     getdiag(self.mat_d_z_d_z2,self.AzzA_prev)
     G = diag(zz_tn)+2*self.gamma_prior_beta
     H = self.AzzA_prev
     a1 = 2.0*(self.gamma_prior_alpha+1.0)
     a2 = (4.0*self.gamma_prior_alpha+5.0)*E + H - G
     a3 = ((2.0*self.gamma_prior_alpha+3)*E-2.0*G)*E
     a4 = -G*E**2
     Q = ((3.0*a3/a1)-((a2/a1)**2))/9
     R = (9*a1*a2*a3-27*a4*(a1**2)-2*(a2**3))/(54*a1**3)
     ##delta = Q**3+R**2
     #rho = sqrt(-Q**3)
     #theta = arccos(R/rho)
     theta = arccos(sign(R)*minimum(exp(log(abs(R))-3.0/2.0*log(-Q)),1.0))
     #print theta1, theta
     #JJ = pow(rho,1.0/3)
     HH = sqrt(-Q)
     am = 2*HH*cos(theta/3)-a2/(3.0*a1)        
     am = maximum(abs(am),0.00001)
     
     gamma_mean_diff = sum((am-gamma_tn)**2)/d_z
     gamma_tn[:] = am
     return gamma_mean_diff
Exemplo n.º 2
0
    def compute_gamma(self, A, E, zz_tn_prev, zz_tn, gamma_tn):
        """
        Replaces the current value of the gamma parameters with 
        its updated value, and returns the mean square difference between the two.
        """
        # This is the main bottleneck of the code.
        # Would be faster if:
        # - implemented in C
        # - roots() was also implemented in C
        d_z = len(gamma_tn)
        product_matrix_matrix(zz_tn_prev, A.T, self.mat_d_z_d_z)
        product_matrix_matrix(A, self.mat_d_z_d_z, self.mat_d_z_d_z2)
        getdiag(self.mat_d_z_d_z2, self.AzzA_prev)
        G = diag(zz_tn) + 2 * self.gamma_prior_beta
        H = self.AzzA_prev
        a1 = 2.0 * (self.gamma_prior_alpha + 1.0)
        a2 = (4.0 * self.gamma_prior_alpha + 5.0) * E + H - G
        a3 = ((2.0 * self.gamma_prior_alpha + 3) * E - 2.0 * G) * E
        a4 = -G * E**2
        Q = ((3.0 * a3 / a1) - ((a2 / a1)**2)) / 9
        R = (9 * a1 * a2 * a3 - 27 * a4 * (a1**2) - 2 * (a2**3)) / (54 * a1**3)
        ##delta = Q**3+R**2
        #rho = sqrt(-Q**3)
        #theta = arccos(R/rho)
        theta = arccos(
            sign(R) * minimum(exp(log(abs(R)) - 3.0 / 2.0 * log(-Q)), 1.0))
        #print theta1, theta
        #JJ = pow(rho,1.0/3)
        HH = sqrt(-Q)
        am = 2 * HH * cos(theta / 3) - a2 / (3.0 * a1)
        am = maximum(abs(am), 0.00001)

        gamma_mean_diff = sum((am - gamma_tn)**2) / d_z
        gamma_tn[:] = am
        return gamma_mean_diff
Exemplo n.º 3
0
 def log_det_diff2_log_gamma(self,A,E,zz_tn_prev,zz_tn,gamma_tn):
     d_z = len(gamma_tn)
     product_matrix_matrix(zz_tn_prev,A.T,self.mat_d_z_d_z)
     product_matrix_matrix(A,self.mat_d_z_d_z,self.mat_d_z_d_z2)
     getdiag(self.mat_d_z_d_z2,self.AzzA_prev)
     G = 0.5*diag(zz_tn)+self.gamma_prior_beta
     H = 0.5*self.AzzA_prev
     gamma_E_1 = (gamma_tn+E)
     gamma_E_2 = gamma_E_1*gamma_E_1
     gamma_E_3 = gamma_E_2*gamma_E_1
     return sum(log(G/gamma_tn+H*gamma_tn*(E-gamma_tn)/gamma_E_3-0.5*E*gamma_tn/gamma_E_2))
Exemplo n.º 4
0
 def log_det_diff2_log_gamma(self, A, E, zz_tn_prev, zz_tn, gamma_tn):
     d_z = len(gamma_tn)
     product_matrix_matrix(zz_tn_prev, A.T, self.mat_d_z_d_z)
     product_matrix_matrix(A, self.mat_d_z_d_z, self.mat_d_z_d_z2)
     getdiag(self.mat_d_z_d_z2, self.AzzA_prev)
     G = 0.5 * diag(zz_tn) + self.gamma_prior_beta
     H = 0.5 * self.AzzA_prev
     gamma_E_1 = (gamma_tn + E)
     gamma_E_2 = gamma_E_1 * gamma_E_1
     gamma_E_3 = gamma_E_2 * gamma_E_1
     return sum(
         log(G / gamma_tn + H * gamma_tn * (E - gamma_tn) / gamma_E_3 -
             0.5 * E * gamma_tn / gamma_E_2))
Exemplo n.º 5
0
 def multivariate_norm_log_pdf(self,x,mu,cov):
     # -0.5 * (dot(x-mu,dot(inv(cov),x-mu)) + len(x)*log(2*pi) + log(det(cov)))
     self.vec_d_y[:] = x
     self.vec_d_y[:] -= mu
     solve(cov,reshape(self.vec_d_y,(-1,1)),reshape(self.vec_d_y2,(-1,1)),
           self.covf,self.colvecf,self.pivotscov)
     ret = dot(self.vec_d_y,self.vec_d_y2)
     ret += len(x)*log(2*pi)
     lu(cov,self.pcov,self.Lcov,self.Ucov,self.covf,self.pivotscov)
     getdiag(self.Ucov,self.vec_d_y)
     absolute(self.vec_d_y,self.vec_d_y2)
     log(self.vec_d_y2,self.vec_d_y)
     ret += sum(self.vec_d_y)
     ret *= -0.5
     return ret
Exemplo n.º 6
0
 def multivariate_norm_log_pdf(self, x, mu, cov):
     # -0.5 * (dot(x-mu,dot(inv(cov),x-mu)) + len(x)*log(2*pi) + log(det(cov)))
     self.vec_d_y[:] = x
     self.vec_d_y[:] -= mu
     solve(cov, reshape(self.vec_d_y, (-1, 1)),
           reshape(self.vec_d_y2, (-1, 1)), self.covf, self.colvecf,
           self.pivotscov)
     ret = dot(self.vec_d_y, self.vec_d_y2)
     ret += len(x) * log(2 * pi)
     lu(cov, self.pcov, self.Lcov, self.Ucov, self.covf, self.pivotscov)
     getdiag(self.Ucov, self.vec_d_y)
     absolute(self.vec_d_y, self.vec_d_y2)
     log(self.vec_d_y2, self.vec_d_y)
     ret += sum(self.vec_d_y)
     ret *= -0.5
     return ret
Exemplo n.º 7
0
 def multivariate_norm_log_pdf(self,x,mu,cov):
     #return -0.5 * (dot(x-mu,dot(inv(cov),x-mu)) + len(x)*log(2*pi) + sum(log(eigvals(cov))))
     #return_old =  -0.5 * (dot(x-mu,solve(cov,x-mu)) + len(x)*log(2*pi) + sum(log(abs(diag(scipy.linalg.lu(cov)[2])))))
     self.vec_d_y[:] = x
     self.vec_d_y[:] -= mu
     solve(cov,reshape(self.vec_d_y,(-1,1)),reshape(self.vec_d_y2,(-1,1)),
           self.covf,self.colvecf,self.pivotscov)
     ret = dot(self.vec_d_y,self.vec_d_y2)
     ret += len(x)*log(2*pi)
     lu(cov,self.pcov,self.Lcov,self.Ucov,self.covf,self.pivotscov)
     getdiag(self.Ucov,self.vec_d_y)
     absolute(self.vec_d_y,self.vec_d_y2)
     log(self.vec_d_y2,self.vec_d_y)
     ret += sum(self.vec_d_y)
     ret *= -0.5
     return ret
Exemplo n.º 8
0
 def multivariate_norm_log_pdf(self, x, mu, cov):
     #return -0.5 * (dot(x-mu,dot(inv(cov),x-mu)) + len(x)*log(2*pi) + sum(log(eigvals(cov))))
     #return_old =  -0.5 * (dot(x-mu,solve(cov,x-mu)) + len(x)*log(2*pi) + sum(log(abs(diag(scipy.linalg.lu(cov)[2])))))
     self.vec_d_y[:] = x
     self.vec_d_y[:] -= mu
     solve(cov, reshape(self.vec_d_y, (-1, 1)),
           reshape(self.vec_d_y2, (-1, 1)), self.covf, self.colvecf,
           self.pivotscov)
     ret = dot(self.vec_d_y, self.vec_d_y2)
     ret += len(x) * log(2 * pi)
     lu(cov, self.pcov, self.Lcov, self.Ucov, self.covf, self.pivotscov)
     getdiag(self.Ucov, self.vec_d_y)
     absolute(self.vec_d_y, self.vec_d_y2)
     log(self.vec_d_y2, self.vec_d_y)
     ret += sum(self.vec_d_y)
     ret *= -0.5
     return ret