Exemplo n.º 1
0
 def test_bgr2rgb(self):
     in_img = np.random.rand(10, 10, 3).astype(np.float32)
     out_img = mmcv.bgr2rgb(in_img)
     assert out_img.shape == in_img.shape
     assert_array_equal(out_img[..., 0], in_img[..., 2])
     assert_array_equal(out_img[..., 1], in_img[..., 1])
     assert_array_equal(out_img[..., 2], in_img[..., 0])
Exemplo n.º 2
0
def show_result_pyplot(model,
                       img,
                       result,
                       score_thr=0.3,
                       fig_size=(15, 10),
                       out_file=None):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img,
                            result,
                            score_thr=score_thr,
                            show=False,
                            out_file=out_file)
    if out_file is None:
        plt.figure(figsize=fig_size)
        plt.imshow(mmcv.bgr2rgb(img))
        plt.show()
Exemplo n.º 3
0
def show_result_pyplot(img,
                       result,
                       class_names,
                       score_thr=0.3,
                       fig_size=(15, 10),
                       out_file=None):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
    """
    img = show_result(img,
                      result,
                      class_names,
                      score_thr=score_thr,
                      show=False,
                      out_file=out_file)
    if out_file is None:
        plt.figure(figsize=fig_size)
        plt.imshow(mmcv.bgr2rgb(img))
Exemplo n.º 4
0
def main():
    parser = ArgumentParser()
    parser.add_argument('img_dir', help='Image dir')
    parser.add_argument('config_dir', help='Config dir')
    parser.add_argument('checkpoint_dir', help='Checkpoint dir')
    parser.add_argument('result_dir', help='result dir')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--score-thr', type=float, default=0.9, help='bbox score threshold')
    args = parser.parse_args()

    # build the model from a config file and a checkpoint file
    model = init_detector(args.config_dir, args.checkpoint_dir, device=args.device)
    
    # test some img
    select_result = []
    for img_file in os.listdir(args.img_dir):
        print(img_file)
        img = args.img_dir + img_file
        result = inference_detector(model, img)

        # show the results
        result_pic = show_result_pyplot(model, img, result, score_thr=args.score_thr)
        plt.figure(figsize=(15, 10))
        plt.imshow(mmcv.bgr2rgb(result_pic))
        plt.title('result')
        plt.tight_layout()
        plt.savefig(args.result_dir + img_file)
Exemplo n.º 5
0
def save_result_pyplot(model,
                       img,
                       result,
                       output_path,
                       score_thr=0.3,
                       fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(
        img,
        result,
        score_thr=score_thr,
        show=False,
        bbox_color='red',
        text_color='red',
        thickness=4,
        font_scale=0.75,
    )
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.savefig(output_path, format='jpg')
    plt.cla()
Exemplo n.º 6
0
def show_result_pyplot(index,
                       model,
                       img,
                       result,
                       score_thr=0.3,
                       fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img,
                            result,
                            score_thr=score_thr,
                            show=False,
                            thickness=5)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.axis('off')
    plt.savefig('./result_images/' + index[-16:],
                bbox_inches='tight',
                pad_inches=0)
    plt.clf()
    plt.close('all')
Exemplo n.º 7
0
def show_result_pyplot(model,
                       img,
                       result,
                       score_thr=0.3,
                       fig_size=(15, 10),
                       title='result',
                       block=True):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
        title (str): Title of the pyplot figure.
        block (bool): Whether to block GUI.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img, result, score_thr=score_thr, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.title(title)
    plt.tight_layout()
    plt.show(block=block)
Exemplo n.º 8
0
def show_pose_result(model,
                     img,
                     result,
                     kpt_score_thr=0.3,
                     skeleton=None,
                     fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str | np.ndarray): Image filename or loaded image.
        result (list[dict]): The results to draw over `img`
                (bbox_result, pose_result).
        kpt_score_thr (float): The threshold to visualize the keypoints.
        skeleton (list[tuple()]):
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module

    img = model.show_result(img,
                            result,
                            skeleton,
                            kpt_score_thr=kpt_score_thr,
                            show=False)

    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.show()
Exemplo n.º 9
0
def show_result_pyplot(img: Union[str, np.ndarray],
                       result: np.ndarray,
                       palette: Optional[Iterable] = None,
                       fig_size: Iterable[int] = (15, 10),
                       opacity: float = 0.5,
                       title: str = '',
                       block: bool = True):
    img = mmcv.imread(img)
    img = img.copy()
    seg = result[0]
    seg = mmcv.imresize(seg, img.shape[:2][::-1])
    palette = np.array(palette)
    assert palette.shape[1] == 3
    assert len(palette.shape) == 2
    assert 0 < opacity <= 1.0
    color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
    for label, color in enumerate(palette):
        color_seg[seg == label, :] = color
    # convert to BGR
    color_seg = color_seg[..., ::-1]

    img = img * (1 - opacity) + color_seg * opacity
    img = img.astype(np.uint8)

    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.title(title)
    plt.tight_layout()
    plt.show(block=block)
Exemplo n.º 10
0
 def _totensor(img, bgr2rgb, float32):
     if img.shape[2] == 3 and bgr2rgb:
         img = mmcv.bgr2rgb(img)
     img = torch.from_numpy(img.transpose(2, 0, 1))
     if float32:
         img = img.float()
     return img
Exemplo n.º 11
0
def show_result_pyplot(model,
                       img_path,
                       result,
                       score_thr=0.3,
                       fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img, coordinates_list, label_txts = model.show_result(img_path,
                                                          result,
                                                          score_thr=score_thr,
                                                          show=False)
    # color_scheme = extract_color_scheme(img, coordinates_list)
    # color_scheme = scheme(img, coordinates_list)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.show()
    # img = mmcv.bgr2rgb(img)
    save_path = os.path.join('results', img_path.split('/')[-1])
    mmcv.imwrite(img, save_path)
    return img, coordinates_list, label_txts
Exemplo n.º 12
0
 def convert_color(img_group, to_grayscale, to_rgb):
     if to_grayscale:
         return [mmcv.bgr2gray(img, keepdim=True) for img in img_group]
     elif to_rgb:
         return [mmcv.bgr2rgb(img) for img in img_group]
     else:
         return img_group
Exemplo n.º 13
0
def save_result_pyplot(img,
                       result,
                       class_names,
                       images_path,
                       results_path,
                       score_thr=0.3,
                       fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        results_path: The path to the directory where the images should be saved
        images_path: The path to the directory of the images
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    img_result = show_result(join(images_path, img),
                             result,
                             class_names,
                             score_thr=score_thr,
                             show=False)
    plt.figure(figsize=fig_size)
    plt.imsave(join(results_path, img), mmcv.bgr2rgb(img_result))
Exemplo n.º 14
0
def get_display_img(args, item, pipelines):
    """get image to display."""
    # srcs picture could be in RGB or BGR order due to different backends.
    if args.bgr2rgb:
        item['img'] = mmcv.bgr2rgb(item['img'])
    src_image = item['img'].copy()
    pipeline_images = [src_image]

    # get intermediate images through pipelines
    if args.mode in ['transformed', 'concat', 'pipeline']:
        for pipeline in pipelines.values():
            item = pipeline(item)
            trans_image = copy.deepcopy(item['img'])
            trans_image = np.ascontiguousarray(trans_image, dtype=np.uint8)
            pipeline_images.append(trans_image)

    # concatenate images to be showed according to mode
    if args.mode == 'original':
        image = prepare_imgs(args, [src_image], ['src'])
    elif args.mode == 'transformed':
        image = prepare_imgs(args, [pipeline_images[-1]], ['transformed'])
    elif args.mode == 'concat':
        steps = ['src', 'transformed']
        image = prepare_imgs(args, [pipeline_images[0], pipeline_images[-1]],
                             steps)
    elif args.mode == 'pipeline':
        steps = ['src'] + list(pipelines.keys())
        image = prepare_imgs(args, pipeline_images, steps)

    return image
Exemplo n.º 15
0
def show_result_pyplot(model,
                       img,
                       result,
                       palette=None,
                       fig_size=(15, 10),
                       opacity=0.5):
    """Visualize the segmentation results on the image.

    Args:
        model (nn.Module): The loaded segmentor.
        img (str or np.ndarray): Image filename or loaded image.
        result (list): The segmentation result.
        palette (list[list[int]]] | None): The palette of segmentation
            map. If None is given, random palette will be generated.
            Default: None
        fig_size (tuple): Figure size of the pyplot figure.
        opacity(float): Opacity of painted segmentation map.
            Default 0.5.
            Must be in (0, 1] range.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img,
                            result,
                            palette=palette,
                            show=False,
                            opacity=opacity)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.show()
    def get_image(self, image, transform_I):
        # transform
        img = mmcv.bgr2rgb(image)
        crop_size = Image.fromarray(img).size

        img = transform_I(Image.fromarray(img))

        return img, crop_size
Exemplo n.º 17
0
def imshow_bboxes_w_ids(img,
                        bboxes,
                        ids,
                        thickness=1,
                        font_scale=0.5,
                        out_file=None):
    assert bboxes.ndim == 2
    assert ids.ndim == 1
    assert bboxes.shape[0] == ids.shape[0]
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
    if isinstance(img, str):
        img = plt.imread(img)
    else:
        img = mmcv.bgr2rgb(img)
    plt.imshow(img)
    plt.gca().set_axis_off()
    plt.autoscale(False)
    plt.subplots_adjust(top=1,
                        bottom=0,
                        right=1,
                        left=0,
                        hspace=None,
                        wspace=None)
    plt.margins(0, 0)
    plt.gca().xaxis.set_major_locator(plt.NullLocator())
    plt.gca().yaxis.set_major_locator(plt.NullLocator())

    for bbox, id in zip(bboxes, ids):
        bbox_int = bbox.astype(np.int32)
        left_top = (bbox_int[0], bbox_int[1])
        w = bbox_int[2] - bbox_int[0] + 1
        h = bbox_int[3] - bbox_int[1] + 1
        color = random_color(id)
        plt.gca().add_patch(
            Rectangle(left_top,
                      w,
                      h,
                      thickness,
                      edgecolor=color,
                      facecolor='none'))
        label_text = '{}'.format(int(id))
        bg_height = 15
        bg_width = 12
        bg_width = len(label_text) * bg_width
        plt.gca().add_patch(
            Rectangle((left_top[0], left_top[1] - bg_height),
                      bg_width,
                      bg_height,
                      thickness,
                      edgecolor=color,
                      facecolor=color))
        plt.text(left_top[0] - 1, left_top[1], label_text, fontsize=5)

    if out_file is not None:
        plt.savefig(out_file, dpi=300, bbox_inches='tight', pad_inches=0.0)
    plt.show()
    plt.clf()
    return img
Exemplo n.º 18
0
    def _totensor(img, bgr2rgb, float32):
        if img.shape[2] == 3 and bgr2rgb:
            img = mmcv.bgr2rgb(img)

        #img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
        #img = torch.from_numpy(img.transpose(2, 0, 1))
        img = trans(img)

        if float32:
            img = img.float()
        return img
Exemplo n.º 19
0
    def get_image(self, image, transform_I, size, crop_coords):
        # crop
        img = mmcv.bgr2rgb(image)
        if self.opt.isTrain and not self.use_for_finetune:
            img = self.crop(Image.fromarray(img), crop_coords)
        else:
            img = Image.fromarray(img)
        crop_size = img.size

        # transform
        img = transform_I(img)

        return img, crop_size
Exemplo n.º 20
0
    def get_image(self, image, transform_I, crop_coords):
        # transform
        img = mmcv.bgr2rgb(image)
        img = self.crop(Image.fromarray(img), crop_coords)  # debug
        crop_size = img.size

        # crop_size = Image.fromarray(img).size

        # debug
        # img = transform_I(Image.fromarray(img))
        img = transform_I(img)

        return img, crop_size
Exemplo n.º 21
0
def show_ann(coco, img, ann_info):
    """Show the img.

    :param coco: the class of coco
    :type coco: object
    :param img: image
    :type img: ndarray
    :param ann_info: the annotation information
    :type ann_info: tuple
    """
    plt.imshow(mmcv.bgr2rgb(img))
    plt.axis('off')
    coco.showAnns(ann_info)
    plt.show()
Exemplo n.º 22
0
def show_result_pyplot(model, img, result, fig_size=(15, 10)):
    """Visualize the classification results on the image.

    Args:
        model (nn.Module): The loaded classifier.
        img (str or np.ndarray): Image filename or loaded image.
        result (list): The classification result.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img, result, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.show()
Exemplo n.º 23
0
def show_result_pyplot(model, img_file, result, score_thr=0.3, fig_size=(16, 9)):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img_file, result, score_thr=score_thr, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    plt.savefig(img_file.split('.')[0] + '_det_results.jpg', dpi=120)
Exemplo n.º 24
0
def get_result_image(img):
    model = load_model()
    result = inference_detector(model, img)
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img, result, score_thr=0.3, show=False)
    plt.figure(figsize=(10, 10))
    plt.axis('off')
    plt.imshow(mmcv.bgr2rgb(img))
    plt.tight_layout()

    now = datetime.now()
    dt = now.strftime("%m%d%H%M%S")

    result_img_path = './static/outputs/output_' + dt + '.png'
    plt.savefig(result_img_path)
    result_img_path = result_img_path[9:]
    return result_img_path
Exemplo n.º 25
0
 def nondist_validation(self, dataloader, current_iter, tb_logger,
                        save_img):
     assert dataloader is None, 'Validation dataloader should be None.'
     self.test()
     result = tensor2img(self.output, min_max=(-1, 1))
     if self.opt['is_train']:
         save_img_path = osp.join(self.opt['path']['visualization'],
                                  'train', f'train_{current_iter}.png')
     else:
         save_img_path = osp.join(self.opt['path']['visualization'], 'test',
                                  f'test_{self.opt["name"]}.png')
     mmcv.imwrite(result, save_img_path)
     # add sample images to tb_logger
     result = (result / 255.).astype(np.float32)
     result = mmcv.bgr2rgb(result)
     if tb_logger is not None:
         tb_logger.add_image(
             'samples', result, global_step=current_iter, dataformats='HWC')
Exemplo n.º 26
0
def show_result_pyplot(model, img, result, score_thr=0.3, fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img, result, score_thr=score_thr, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    # plt.savefig(save_pth + "/{}.png".format(im_str.split('.')[0]), bbox_inches='tight')
    plt.show()
Exemplo n.º 27
0
def get_display_img(item, pipeline, mode, bgr2rgb):
    """get image to display."""
    if bgr2rgb:
        item['img'] = mmcv.bgr2rgb(item['img'])
    src_image = item['img'].copy()
    # get transformed picture
    if mode in ['pipeline', 'concat']:
        item = pipeline(item)
        trans_image = item['img']
        trans_image = np.ascontiguousarray(trans_image, dtype=np.uint8)

    if mode == 'concat':
        image = concat(src_image, trans_image)
    elif mode == 'original':
        image = src_image
    elif mode == 'pipeline':
        image = trans_image
    return image
Exemplo n.º 28
0
def vis3d():
    v_path = os.path.join(root, 'unzip', 'test_video/id03862/jc6k4sbenMY/00366' + '.mp4' )
    lmark_path = os.path.join(root, 'unzip', 'test_video/id03862/jc6k4sbenMY/00366_prnet' + '.npy' )
    # lmark_path = os.path.join(root, 'unzip', 'test_video/id04276/k0zLls_oen0/00341_prnet' + '.npy' )
    cap  =  cv2.VideoCapture(v_path)
    lmark = np.load(lmark_path)
    print (lmark.shape)
    print (lmark[0])
    count = 0
    tmp = v_path.split('/')
    real_video  = mmcv.VideoReader(v_path)
    for count in range(0,100):
        input = real_video[count]
        input = mmcv.bgr2rgb(input)
        preds = lmark#[count]
        #TODO: Make this nice
        fig = plt.figure(figsize=plt.figaspect(.5))
        ax = fig.add_subplot(1, 2, 1)
        ax.imshow(input)
        ax.plot(preds[0:17,0],preds[0:17,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[17:22,0],preds[17:22,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[22:27,0],preds[22:27,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[27:31,0],preds[27:31,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[31:36,0],preds[31:36,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[36:42,0],preds[36:42,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[42:48,0],preds[42:48,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[48:60,0],preds[48:60,1],marker='o',markersize=1,linestyle='-',color='w',lw=1)
        ax.plot(preds[60:68,0],preds[60:68,1],marker='o',markersize=1,linestyle='-',color='w',lw=1) 
        ax.axis('off')

        ax = fig.add_subplot(1, 2, 2, projection='3d')
        surf = ax.scatter(preds[:,0]*1.2,preds[:,1],preds[:,2],c="cyan", alpha=1.0, edgecolor='b')
        ax.plot3D(preds[:17,0]*1.2,preds[:17,1], preds[:17,2], color='blue' )
        ax.plot3D(preds[17:22,0]*1.2,preds[17:22,1],preds[17:22,2], color='blue')
        ax.plot3D(preds[22:27,0]*1.2,preds[22:27,1],preds[22:27,2], color='blue')
        ax.plot3D(preds[27:31,0]*1.2,preds[27:31,1],preds[27:31,2], color='blue')
        ax.plot3D(preds[31:36,0]*1.2,preds[31:36,1],preds[31:36,2], color='blue')
        ax.plot3D(preds[36:42,0]*1.2,preds[36:42,1],preds[36:42,2], color='blue')
        ax.plot3D(preds[42:48,0]*1.2,preds[42:48,1],preds[42:48,2], color='blue')
        ax.plot3D(preds[48:,0]*1.2,preds[48:,1],preds[48:,2], color='blue' )

        ax.view_init(elev=90., azim=90.)
        ax.set_xlim(ax.get_xlim()[::-1])
        plt.show()
Exemplo n.º 29
0
def show_result_pyplot(model, img, result, palette=None, fig_size=(15, 10)):
    """Visualize the segmentation results on the image.

    Args:
        model (nn.Module): The loaded segmentor.
        img (str or np.ndarray): Image filename or loaded image.
        result (list): The segmentation result.
        palette (list[list[int]]] | None): The palette of segmentation
            map. If None is given, random palette will be generated.
            Default: None
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img, result, palette=palette, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))
    #plt.imsave('my_demo.png', mmcv.bgr2rgb(img))
    plt.savefig('my_demo.png')
Exemplo n.º 30
0
def show_result_pyplot(model,
                       img,
                       result,
                       score_thr=0.3,
                       fig_size=(15, 10),
                       name=1):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
    """
    if hasattr(model, 'module'):
        model = model.module
    img = model.show_result(img, result, score_thr=score_thr, show=False)
    # plt.figure(figsize=fig_size)
    # plt.imshow(mmcv.bgr2rgb(img))
    # import pdb; pdb.set_trace()
    plt.imsave('/home/pengyi/temp{}.jpg'.format(name), mmcv.bgr2rgb(img))
    plt.show()