# for Valence intensity classification loss_func_aux2 = 'categorical_crossentropy' # loss function metr_aux2 = 'accuracy' # evaluation metric weight_aux2 = 0.5 # weight for multitask learning # Download the data if not present mosi = MOSI() covarep = mosi.covarep() # features facet = mosi.facet() # features embeddings = mosi.embeddings() # features sentiments = mosi.sentiments() # Valence labels train_ids = mosi.train() valid_ids = mosi.valid() test_ids = mosi.test() bimodal = Dataset.merge(embeddings, covarep) dataset = bimodal.align('embeddings') # Some data preprocessing print("Preparing train and test data...") # sort through all the video ID, segment ID pairs train_set_ids = [] for vid in train_ids: for sid in dataset['embeddings'][vid].keys(): if dataset['embeddings'][vid][sid] and dataset['covarep'][vid][sid]: train_set_ids.append((vid, sid)) valid_set_ids = [] for vid in valid_ids: for sid in dataset['embeddings'][vid].keys(): if dataset['embeddings'][vid][sid] and dataset['covarep'][vid][sid]:
if __name__ == "__main__": # Download the data if not present mosi = Dataloader('http://sorena.multicomp.cs.cmu.edu/downloads/MOSI') embeddings = mosi.embeddings() facet = mosi.facet() covarep = mosi.covarep() sentiments = mosi.sentiments( ) # sentiment labels, real-valued. for this tutorial we'll binarize them train_ids = mosi.train() # set of video ids in the training set valid_ids = mosi.valid() # set of video ids in the valid set test_ids = mosi.test() # set of video ids in the test set # Merge different features and do word level feature alignment (align according to timestamps of embeddings) bimodal = Dataset.merge(embeddings, facet) trimodal = Dataset.merge(bimodal, covarep) dataset = trimodal.align('embeddings') # sort through all the video ID, segment ID pairs train_set_ids = [] for vid in train_ids: for sid in dataset['embeddings'][vid].keys(): if dataset['embeddings'][vid][sid] and dataset['facet'][vid][ sid] and dataset['covarep'][vid][sid]: train_set_ids.append((vid, sid)) valid_set_ids = [] for vid in valid_ids: for sid in dataset['embeddings'][vid].keys(): if dataset['embeddings'][vid][sid] and dataset['facet'][vid][
# for Valence polarity classification loss_func_aux = 'binary_crossentropy' # loss function metr_aux = 'binary_accuracy' # evaluation metric weight_aux = 0.5 # weight for multitask learning # Download the data if not present mosi = MOSI() covarep = mosi.covarep() # features facet = mosi.facet() # features embeddings = mosi.embeddings() # features sentiments = mosi.sentiments() # Valence labels train_ids = mosi.train() valid_ids = mosi.valid() test_ids = mosi.test() bimodal = Dataset.merge(embeddings, facet) dataset = bimodal.align('embeddings') # Some data preprocessing print("Preparing train and test data...") # sort through all the video ID, segment ID pairs train_set_ids = [] for vid in train_ids: for sid in dataset['embeddings'][vid].keys(): if dataset['embeddings'][vid][sid] and dataset['facet'][vid][sid]: train_set_ids.append((vid, sid)) valid_set_ids = [] for vid in valid_ids: for sid in dataset['embeddings'][vid].keys(): if dataset['embeddings'][vid][sid] and dataset['facet'][vid][sid]: