Exemplo n.º 1
0
def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
           # model.CLASSES = checkpoint['meta']['CLASSES']
           model.CLASSES = get_classes('own')
            
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('own')

    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model
Exemplo n.º 2
0
def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        map_loc = 'cpu' if device == 'cpu' else None
        checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.simplefilter('once')
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    # model = MMDataParallel(model, device_ids=[0]) # 직접 추가한 코드, inference time 체크할 때 사용
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model
Exemplo n.º 3
0
    def show_result(self,
                    data,
                    result,
                    img_norm_cfg,
                    frame_index,
                    show=False,
                    dataset=None,
                    score_thr=0.3):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(0,
                                                   256, (1, 3),
                                                   dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5

            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)  # category_id -1
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(img_show,
                                   bboxes,
                                   labels,
                                   show=show,
                                   class_names=class_names,
                                   wait_time=1,
                                   out_file="output/polyp/" +
                                   str("{:04d}".format(frame_index)) + ".png",
                                   score_thr=score_thr)
Exemplo n.º 4
0
def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        map_loc = 'cpu' if device == 'cpu' else None
        checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = get_classes('coco')
    model.eval()
    return model
def show_result(img, result, dataset='coco', score_thr=0.3, out_file=None, font_scale=0.5):
    img = mmcv.imread(img)
    class_names = get_classes(dataset)
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(
                0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)

    write_bboxes_to_npy(bboxes, out_file)

    mmcv.imshow_det_bboxes(
        img.copy(),
        bboxes,
        labels,
        class_names=class_names,
        score_thr=score_thr,
        show=out_file is None,
        out_file=out_file,
        font_scale=font_scale)
Exemplo n.º 6
0
def vis_seg(data, result, img_norm_cfg, data_id, colors, score_thr, save_dir):
    img_tensor = data['img'][0]
    img_metas = data['img_meta'][0].data[0]
    imgs = tensor2imgs(img_tensor, **img_norm_cfg)
    assert len(imgs) == len(img_metas)
    class_names = get_classes('tianchi')

    for img, img_meta, cur_result in zip(imgs, img_metas, result):
        if cur_result is None:
            continue
        h, w, _ = img_meta['img_shape']
        img_show = img[:h, :w, :]
        
        seg_label = cur_result[0]
        seg_label = seg_label.cpu().numpy().astype(np.uint8)
        cate_label = cur_result[1]
        cate_label = cate_label.cpu().numpy()
        score = cur_result[2].cpu().numpy()

        vis_inds = score > score_thr
        seg_label = seg_label[vis_inds]
        num_mask = seg_label.shape[0]
        cate_label = cate_label[vis_inds]
        cate_score = score[vis_inds]

        mask_density = []
        for idx in range(num_mask):
            cur_mask = seg_label[idx, :, :]
            cur_mask = mmcv.imresize(cur_mask, (w, h))
            cur_mask = (cur_mask > 0.5).astype(np.int32)
            mask_density.append(cur_mask.sum())
        orders = np.argsort(mask_density)
        seg_label = seg_label[orders]
        cate_label = cate_label[orders]
        cate_score = cate_score[orders]

        seg_show = img_show.copy()
        for idx in range(num_mask):
            idx = -(idx+1)
            cur_mask = seg_label[idx, :,:]
            cur_mask = mmcv.imresize(cur_mask, (w, h))
            cur_mask = (cur_mask > 0.5).astype(np.uint8)
            if cur_mask.sum() == 0:
               continue
            color_mask = np.random.randint(
                0, 256, (1, 3), dtype=np.uint8)
            cur_mask_bool = cur_mask.astype(np.bool)
            seg_show[cur_mask_bool] = img_show[cur_mask_bool] * 0.5 + color_mask * 0.5

            cur_cate = cate_label[idx]
            cur_score = cate_score[idx]

            label_text = class_names[cur_cate]
            #label_text += '|{:.02f}'.format(cur_score)
            # center
            center_y, center_x = ndimage.measurements.center_of_mass(cur_mask)
            vis_pos = (max(int(center_x) - 10, 0), int(center_y))
            cv2.putText(seg_show, label_text, vis_pos,
                        cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255))  # green
        mmcv.imwrite(seg_show, '{}/{}.jpg'.format(save_dir, data_id))
Exemplo n.º 7
0
    def show_gt_result(self,
                       data,
                       bbox_gts,
                       label_gts,
                       img_norm_cfg,
                       mask_gts=None,
                       dataset=None,
                       image_dir=None,
                       show=False,
                       image_name=None):
        bbox_gts = bbox_gts.data[0]
        label_gts = label_gts.data[0]
        if mask_gts:
            mask_gts = mask_gts.data[0]
        else:
            mask_gts = []
        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta, bbox_gt, label_gt, mask_gt in zip(
                imgs, img_metas, bbox_gts, label_gts, mask_gts):
            h, w, _ = img_meta['pad_shape']
            img_show = img[:h, :w, :]

            bboxes = bbox_gt.cpu().numpy()
            # draw segmentation masks
            if len(mask_gts) > 0:
                segms = mask_gt
                for i in range(segms.shape[0]):
                    color_mask = np.random.randint(0,
                                                   256, (1, 3),
                                                   dtype=np.uint8)
                    mask = segms[i, :, :].astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = label_gt.cpu().numpy() - 1
            assert image_dir and image_name, 'image_dir and image_name can not be None'
            if not osp.exists(image_dir):
                os.mkdir(image_dir)
            mmcv.imshow_det_bboxes(img_show,
                                   bboxes,
                                   labels,
                                   text_color='white',
                                   class_names=class_names,
                                   score_thr=0,
                                   show=show,
                                   out_file=osp.join(image_dir, image_name))
Exemplo n.º 8
0
    def show_result(self,
                    data,
                    result,
                    img_norm_cfg,
                    dataset='coco',
                    score_thr=0.3):
        img_tensor = data['img'][0]
        #img_tensor_t = data['img_t'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        #imgs_t = tensor2imgs(img_tensor_t,**)
        assert len(imgs) == len(img_metas)

        if isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, list):
            class_names = dataset
        else:
            raise TypeError('dataset must be a valid dataset name or a list'
                            ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(result)
            ]
            labels = np.concatenate(labels)
            bboxes = np.vstack(result)
            mmcv.imshow_det_bboxes(img_show,
                                   bboxes,
                                   labels,
                                   class_names=class_names,
                                   score_thr=score_thr)
Exemplo n.º 9
0
def initialize_model():

    # Setup a checkpoint file to load
    #checkpoint = '/Developer/3DObject/mymmdetection/waymococo_fasterrcnnr101train/epoch_60.pth'

    #checkpoint = '/Developer/MyRepo/mymodels/mmmodels/HPCwaymococo_fasterrcnnr101train/epoch_25.pth'
    device = 'cuda:0'
    global model
    global config
    global model_dir
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    config.model.train_cfg = None
    config.model.roi_head.bbox_head.num_classes = len(classes)
    model = build_detector(config.model, test_cfg=config.get('test_cfg'))
    if model_dir is not None:
        map_loc = 'cpu' if device == 'cpu' else None
        checkpoint = load_checkpoint(model, model_dir, map_location=map_loc)
        if 'CLASSES' in checkpoint.get('meta', {}):
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    def show_result(self, data, result, dataset=None, score_thr=0.3):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_metas = data['img_meta'][0].data[0]
        if 'img_raw' in data:
            img_tensor = data['img_raw'][0]
            norm_factor = {'mean': [0, 0, 0], 'std': [1, 1, 1], 'to_rgb': True}
            filename = os.path.join(
                'results',
                data['img_meta'][0].data[0][0]['filename'].split('/')[-1])
        else:
            img_tensor = data['img'][0]
            norm_factor = img_metas[0]['img_norm_cfg']
            filename = None
        imgs = tensor2imgs(img_tensor, **norm_factor)
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(0,
                                                   256, (1, 3),
                                                   dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(img_show,
                                   bboxes,
                                   labels,
                                   class_names=class_names,
                                   score_thr=score_thr,
                                   show=False,
                                   out_file=filename)
Exemplo n.º 11
0
def show_result(img,
                result,
                dataset,
                score_thr=0.03,
                wait_time=0,
                show=True,
                out_file=None):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        wait_time (int): Value of waitKey param.
        show (bool, optional): Whether to show the image with opencv or not.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.

    Returns:
        np.ndarray or None: If neither `show` nor `out_file` is specified, the
            visualized image is returned, otherwise None is returned.
    """
    # print("score阈值设置为%f"%score_thr)
    class_names = get_classes(dataset)
    assert isinstance(class_names, (tuple, list))
    img = mmcv.imread(img)
    img = img.copy()
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)
    anno, img = mmcv.imshow_det_bboxes(img,
                                       bboxes,
                                       labels,
                                       class_names=class_names,
                                       score_thr=score_thr,
                                       show=show,
                                       wait_time=wait_time,
                                       out_file=out_file)
    if not (show or out_file):
        return anno, img
Exemplo n.º 12
0
    def show_result(
        self,
        data,
        result,
        img_norm_cfg,
        dataset="coco",
        score_thr=0.3,
    ):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data["img"][0]
        img_metas = data["img_meta"][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)) or dataset is None:
            class_names = dataset
        else:
            raise TypeError(
                "dataset must be a valid dataset name or a sequence"
                " of class names, not {}".format(type(dataset))
            )

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta["img_shape"]
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(
                        0, 256, (1, 3), dtype=np.uint8
                    )
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = (
                        img_show[mask] * 0.5 + color_mask * 0.5
                    )
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                class_names=class_names,
                score_thr=score_thr,
            )
Exemplo n.º 13
0
def det_bboxes(img,
               bboxes,
               labels,
               score_thr=0,
               bbox_color='green',
               text_color='green',
               thickness=2,
               font_scale=0.5,
               show=True,
               win_name='',
               wait_time=0,
               out_file=None):
    assert bboxes.ndim == 2
    assert labels.ndim == 1
    assert bboxes.shape[0] == labels.shape[0]
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]

    bbox_color = mmcv.color_val(bbox_color)
    text_color = mmcv.color_val(text_color)

    ret_str = ''

    for bbox, label in zip(bboxes, labels):
        bbox_int = bbox.astype(np.int32)
        left_top = (bbox_int[0], bbox_int[1])
        right_bottom = (bbox_int[2], bbox_int[3])
        cv2.rectangle(img,
                      left_top,
                      right_bottom,
                      bbox_color,
                      thickness=thickness)
        label_text = str(label)
        dataset_name = 'sign'
        class_names = get_classes(dataset_name)
        label_text = class_names[
            label] if class_names is not None else 'cls {}'.format(label)
        w = bbox_int[2] - bbox_int[0]
        h = bbox_int[3] - bbox_int[1]
        ss = ' ' + str(left_top[0]) + ',' + str(
            left_top[1]) + ',' + str(w) + ',' + str(h)
        if len(bbox) > 4:
            cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2),
                        cv2.FONT_HERSHEY_COMPLEX_SMALL, font_scale, text_color)
        ret_str += ss

    if show:
        mmcv.imshow(img, win_name, wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    return ret_str
Exemplo n.º 14
0
    def show_result(self,
                    data,
                    result,
                    img_norm_cfg,
                    dataset=None,
                    score_thr=0.3,
                    outfile=None):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            # solve UnboundLocalError: local variable '_mlvl_bboxes' referenced before assignment
            # h, w, _ = img_meta['img_shape']
            h, w, _ = img_meta['ori_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(0,
                                                   256, (1, 3),
                                                   dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(img_show,
                                   bboxes,
                                   labels,
                                   class_names=class_names,
                                   score_thr=score_thr,
                                   out_file=outfile)
Exemplo n.º 15
0
    def show_result(self, data, result, dataset=None, score_thr=0.3):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data['img'].data
        print(img_tensor.shape)
        img_metas = data['img_meta'].data[0]
        print(img_metas)
        imgs = tensor2imgs(
            img_tensor, **{
                'mean': np.array([0.5, 0.5, 0.5]),
                'std': np.array([255., 255., 255.]),
                'to_rgb': False
            })
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                print(segms)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(0,
                                                   256, (1, 3),
                                                   dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    print('amsk shape', mask.shape)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(img_show,
                                   bboxes,
                                   labels,
                                   class_names=class_names,
                                   score_thr=score_thr)
Exemplo n.º 16
0
def init_detector(opts, device='cuda:0'):
    config = mmcv.Config.fromfile(opts.config)
    new_config = 'train_pipeline' in config or 'test_pipeline' in config
    if new_config:
        assert opts.in_scale is not None, "New config does not support default input scale"
        # simulate old config
        config.data.test.img_scale = 1
        config.data.test.size_divisor = 32
    if opts.in_scale is not None:
        if 'ssd' in basename(opts.config):
            # SSD
            if opts.in_scale <= 0.2:
                # too small leads to some issues
                l = round(1920 * opts.in_scale)
                config.data.test.img_scale = (l, l)
                config.data.test.resize_keep_ratio = False
            else:
                config.data.test.img_scale = opts.in_scale
                config.data.test.resize_keep_ratio = True
        # My change
        elif config.model.type == 'YoloV3':
            #elif config.model.type == 'YoloV3' or config.model.type == 'YoloV3UA' :
            config.data.test.in_scale = opts.in_scale
            config.data.test.resize_keep_ratio = True
        else:
            config.data.test.img_scale = opts.in_scale
            config.data.test.resize_keep_ratio = True
    if opts.no_mask:
        if 'mask_head' in config.model:
            config.model['mask_head'] = None
    config.model.pretrained = None

    model = build_detector(config.model, test_cfg=config.test_cfg)
    if opts.weights is not None:
        if config.model.type == 'YoloV3':
            if opts.weights.endswith(".weights"):
                # Load darknet weights
                # Check if the weights using are the same. '/data2/mengtial/ModelZoo/yolo/yolov3.weights'
                model.load_darknet_weights(opts.weights)
            else:
                # Load checkpoint weights
                model.load_state_dict(torch.load(opts.weights))
        elif config.model.type == 'YoloV3UA':
            model.load_weights(opts.weights)
        else:
            weights = load_checkpoint(model, opts.weights)
            if 'CLASSES' in weights['meta']:
                model.CLASSES = weights['meta']['CLASSES']
            else:
                model.CLASSES = get_classes('coco')
    model.cfg = config
    model.to(device)
    model.eval()
    return model
Exemplo n.º 17
0
def init_detector(opts, device='cuda:0'):
    config = mmcv.Config.fromfile(opts.config)
    new_config = 'train_pipeline' in config or 'test_pipeline' in config
    if new_config:
        # simulate old config
        if opts.in_scale is None:
            print('Warning: using new config and fixing size_divisor to 32')
            config.data.test.img_scale = config.test_pipeline[1]['img_scale']
        else:
            config.data.test.img_scale = 1
        config.data.test.size_divisor = 32
    if opts.in_scale is not None:
        if 'ssd' in basename(opts.config):
            # SSD
            if opts.in_scale <= 0.2:
                # too small leads to some issues
                l = round(1920 * opts.in_scale)
                config.data.test.img_scale = (l, l)
                config.data.test.resize_keep_ratio = False
            else:
                config.data.test.img_scale = opts.in_scale
                config.data.test.resize_keep_ratio = True
        else:
            config.data.test.img_scale = opts.in_scale
            config.data.test.resize_keep_ratio = True
    if opts.no_mask:
        if 'roi_head' in config.model and 'mask_head' in config.model[
                'roi_head']:
            config.model['roi_head']['mask_head'] = None
    if 'zoom_crop' in opts and opts.zoom_crop:
        config.data.test.zoom_crop = {
            'h': opts.zoom_crop_h,
            'y': opts.zoom_crop_y,
        }
    else:
        config.data.test.zoom_crop = None
    config.model.pretrained = None
    if 'action_head' in config.model:
        config.model['action_head_weights'] = opts.action_head_weights

    model = build_detector(config.model, test_cfg=config.test_cfg)
    map_loc = 'cpu' if device == 'cpu' else None
    checkpoint = load_checkpoint(model, opts.weights, map_location=map_loc)
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        warnings.simplefilter('once')
        warnings.warn('Class names are not saved in the checkpoint\'s '
                      'meta data, use COCO classes by default.')
        model.CLASSES = get_classes('coco')
    model.cfg = config
    model.to(device)
    model.eval()
    return model
def show_and_save_result(img, result, out_dir, dataset="coco", score_thr=0.3):
	class_names = get_classes(dataset)
	labels = [
		np.full(bbox.shape[0], i, dtype=np.int32)
		for i, bbox in enumerate(result)
	]
	labels = np.concatenate(labels)
	bboxes = np.vstack(result)
	
	index = img.rfind("/")
	mmcv.imshow_det_bboxes(img, bboxes, labels, class_names, score_thr, show=True, out_file=out_dir+img[index+1:])
Exemplo n.º 19
0
Arquivo: base.py Projeto: HBSpy/tsd
    def show_result(self, data, result, dataset=None, score_thr=0.3):
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

        img_tensor = data['img'][0]
        img_metas = data['img_metas'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_metas[0]['img_norm_cfg'])
        assert len(imgs) == len(img_metas)

        if dataset is None:
            class_names = self.CLASSES
        elif isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, (list, tuple)):
            class_names = dataset
        else:
            raise TypeError(
                'dataset must be a valid dataset name or a sequence'
                ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(0,
                                                   256, (1, 3),
                                                   dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(bbox_result)
            ]
            labels = np.concatenate(labels)
            print("img_meta: {}".format(img_meta))
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                # class_names=class_names,
                class_names=[str(i) for i in range(len(class_names))],
                score_thr=score_thr,
                gt_bboxes=data['gt_bboxes'][0][0].numpy(),
                gt_labels=(data['gt_labels'][0][0] - 1).numpy())
Exemplo n.º 20
0
def parse_pkldets(input_pkl, img_dir, outdir, score_thr=0.3, dataset='cityscapes'):
    dets = mmcv.load(input_pkl)
    num_imgs = len(dets)
    # num_class = 8
    VOC_CLASSES = get_classes(dataset)
    print(VOC_CLASSES)
    img_names_list = os.listdir(img_dir)

    for k in range(num_imgs):
        print(k)
        imgHeight, imgWidth = 1024, 2048
        imgName = img_names_list[k]
        
        # print(dets[k])
        bbox_result, segm_result = dets[k]
        labels = [
            np.full(bbox.shape[0], i, dtype=np.int32)
            for i, bbox in enumerate(bbox_result)
        ]
        labels = np.concatenate(labels)
        bboxes = np.vstack(bbox_result)
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
 
        # labs, confs, polygons = [], [], []

        ftxt = open(outdir + imgName[:-4] + '.txt', 'w')
        # print(inds)
        for i in inds:
            img = np.zeros((imgHeight, imgWidth), np.uint8) 
            mask = maskUtils.decode(segms[i]).astype(np.bool) # mask predicted.

            # contour, hier = cv2.findContours(mask, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
            # try:
            #     contour = np.reshape(contour[0], [-1, 2])
            # except:
            #     print(k, i, contour, 'Segmentation Error!')
            #     continue 
            # polygon = []
            # for j in range(contour.shape[0]):
            #     polygon.append([int(contour[j, 0]), int(contour[j, 1])])
            # polygons.append(polygon)                        # append polygon of a instance.

            img[mask] = 255                                   # mask as white-color.
            cv2.imwrite(outdir + imgName[:-4] + str(i) + '.png', img)

            # confs.append(round(float(bboxes[i, -1]), 2))    # conf predicted.
            # labs.append(VOC_CLASSES[labels[i]])             # labels predicted.

            # print(imgName[:-4]+str(i)+'.png')
            # print(str(labelDic[VOC_CLASSES[labels[i]]]))
            ftxt.write(imgName[:-4]+str(i)+'.png'+' '+str(labelDic[VOC_CLASSES[labels[i]]])+' '+str(round(float(bboxes[i, -1]), 2))+'\n')
Exemplo n.º 21
0
def show_result(img, result, dataset='coco', score_thr=0.3):
    class_names = get_classes(dataset)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(result)
    ]
    labels = np.concatenate(labels)
    bboxes = np.vstack(result)
    img = mmcv.imread(img)
    mmcv.imshow_det_bboxes(img.copy(),
                           bboxes,
                           labels,
                           class_names=class_names,
                           score_thr=score_thr)
Exemplo n.º 22
0
def run_on_onnxruntime():
    config_file = '../configs/solov2/solov2_light_448_r34_fpn_8gpu_3x.py'
    onnx_file = 'weights/SOLOv2_light_R34.onnx'
    input_names = ['input']
    # output_names = ['C0', 'C1', 'C2', 'C3', 'C4']
    # output_names = ['cate_pred_0', 'cate_pred_1', 'cate_pred_2', 'cate_pred_3', 'cate_pred_4',
    #                 'kernel_pred_0', 'kernel_pred_1', 'kernel_pred_2', 'kernel_pred_3', 'kernel_pred_4',
    #                 'seg_pred']  # Origin
    output_names = ['cate_pred', 'kernel_pred', 'seg_pred']  # add permute & concate
    if isinstance(config_file, str):
        cfg = mmcv.Config.fromfile(config_file)
    elif not isinstance(config_file, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config_file)))

    # 1. Preprocess
    # input demo img size 427x640 --> resized 448x671 --> pad 448x672
    img = 'images/demo.jpg'
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)

    # 2. Run inference on onnxruntime
    print("Load onnx model from {}.".format(onnx_file))
    sess = rt.InferenceSession(onnx_file)
    tic = cv2.getTickCount()
    onnx_output = sess.run(output_names, {input_names[0]: data['img'][0].unsqueeze(0).cpu().numpy()})
    print('-----> onnxruntime inference time: {}ms'.format((cv2.getTickCount() - tic) * 1000/ cv2.getTickFrequency()))

    # 3. Get seg
    # 调用pytorch定义的获取分割图和matrix nms 以及后处理
    from mmdet.models.anchor_heads.solov2_head import SOLOv2Head
    solov2_head = SOLOv2Head(num_classes=81,
                             in_channels=256,
                             num_grids=[40, 36, 24, 16, 12],
                             strides=[8, 8, 16, 32, 32],
                             ins_out_channels = 128,
                             loss_ins=cfg.model.bbox_head.loss_ins,
                             loss_cate=cfg.model.bbox_head.loss_cate)
    cate_preds = [torch.from_numpy(x) for x in onnx_output[:1]]
    kernel_preds = [torch.from_numpy(x) for x in onnx_output[1:2]]
    seg_pred = torch.from_numpy(onnx_output[2])
    result = solov2_head.get_seg(cate_preds, kernel_preds, seg_pred, [data['img_meta'][0].data], cfg.test_cfg, rescale=True)
    show_result_ins(img, result, get_classes('coco'), score_thr=0.25, out_file="images/demo_out_onnxrt_solov2.jpg")
    print('Script done!')
Exemplo n.º 23
0
def nms_after_det(bboxes_list,
                  labels_list,
                  is_pretrained=False,
                  class_names=get_classes('coco'),
                  is_rcnn=True):
    '''
    non maximum suppress on detection result boxes
    input bboxes list and labels list, return ndarray of nms result
    result format: det_bboxes: [[x1, y1, x2, y2, score],...]  det_labels: [0 0 0 0 1 1 1 2 2 ...]
    '''
    # read config file
    if is_rcnn:
        cfg_path = FASTER_RCNN_CONFIG
    cfg = mmcv.Config.fromfile(cfg_path)
    if not is_pretrained:
        cfg.model.pretrained = None

    # NMS
    multi_bboxes = []
    multi_scores = []
    for i, bbox in enumerate(bboxes_list):
        # only show vehicles
        # if 2 <= (labels_list[i] + 1) <= 8:  # vehicles
        if 0 <= labels_list[
                i] <= 7:  # choose what to keep, now keep person and all vehicles
            multi_bboxes.append(bbox[0:4])
            # temp = [0 for _ in range(len(class_names))]
            temp = [0 for _ in range(3)]
            temp[labels_list[i] + 1] = bbox[4]
            multi_scores.append(temp)

    # if result is null
    if not multi_scores:
        return np.array([]), np.array([])

    if is_rcnn:
        det_bboxes, det_labels = multiclass_nms(
            torch.from_numpy(np.array(multi_bboxes).astype(np.float32)),
            torch.from_numpy(np.array(multi_scores).astype(np.float32)),
            cfg.model.test_cfg.rcnn.score_thr, cfg.model.test_cfg.rcnn.nms,
            cfg.model.test_cfg.rcnn.max_per_img)
    else:
        det_bboxes, det_labels = multiclass_nms(
            torch.from_numpy(np.array(multi_bboxes).astype(np.float32)),
            torch.from_numpy(np.array(multi_scores).astype(np.float32)),
            cfg.test_cfg.score_thr, cfg.test_cfg.nms, cfg.test_cfg.max_per_img)

    return det_bboxes.numpy(), det_labels.numpy()
def display_result_3d(img, result, dataset='coco', score_thr=0.3):
    img_np = np.load(img)    
    class_names = get_classes(dataset)
    bbox_result = result
    bboxes = np.vstack(bbox_result)
   
    bboxes_placeholders = [[] for i in range(0, 160)]
    for bbox in bboxes:
        for z_index in range(int(np.floor(bbox[4])), int(np.ceil(bbox[5])+ 1)):
            bboxes_placeholders[z_index].append([bbox[0], bbox[1], bbox[2], bbox[3], bbox[6]])
    
    for index, boxes in enumerate(bboxes_placeholders):
        if len(boxes) > 0:
            for box in boxes:
                if box[4] > score_thr:
                    print('slice {} score {}'.format(index, box[4]))
Exemplo n.º 25
0
def show_result(img, result, dataset='coco', score_thr=0.5, show=True):
    class_names = get_classes(dataset)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(result)
    ]
    # print(result)
    # print(len(result))
    labels = np.concatenate(labels)
    bboxes = np.vstack(result)
    img = mmcv.imread(img)
    anno, img = mmcv.imshow_det_bboxes(img.copy(),
                                       bboxes,
                                       labels,
                                       show=show,
                                       class_names=class_names,
                                       score_thr=score_thr)
    return anno, img
Exemplo n.º 26
0
def save_result(result, dataset='coco', score_thr=0.3):
    """Return list dict [{x1,x2,y1,y2,classe,score},...]
    Args:
        results:
        score_thr (float): Minimum score of bboxes to be shown.
    """
    class_names = get_classes(dataset)
    #class_names = ["person", "plate"]
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(result)
    ]
    labels = np.concatenate(labels)
    bboxes = np.vstack(result)

    return det_bboxes(bboxes,
                      labels,
                      class_names=class_names,
                      score_thr=score_thr)
Exemplo n.º 27
0
def save_result(result, class_to_keep=[], dataset='coco', score_thr=0.3):
    """Return list dict [{x1,x2,y1,y2,classe,score},...]
    Args:
        results:
        class_to_keep (list[str]): Classes to keep (cars, trucks...)
        score_thr (float): Minimum score of bboxes to be shown.
    """
    class_names = get_classes(dataset)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(result)
    ]
    labels = np.concatenate(labels)
    bboxes = np.vstack(result)

    return det_bboxes(bboxes,
                      labels,
                      class_names=class_names,
                      class_to_keep=class_to_keep,
                      score_thr=score_thr)
Exemplo n.º 28
0
def init_detector(config, checkpoint=None, device='cuda:0'):
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_recognizer(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model
Exemplo n.º 29
0
def save_result(img, result, out_file, dataset='coco', score_thr=0.8):
    class_names = get_classes(dataset)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(result)
    ]
    labels = np.concatenate(labels)
    bboxes = np.vstack(result)
    img = mmcv.imread(img)
    mmcv.imshow_det_bboxes(img.copy(),
                           bboxes,
                           labels,
                           class_names=class_names,
                           score_thr=score_thr,
                           bbox_color='red',
                           text_color='white',
                           thickness=2,
                           font_scale=0.8,
                           show=False,
                           out_file=out_file)
def mymm2d_init_detector(config, checkpoint=None, device='cuda:0'):
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    config.model.train_cfg = None
    model = build_detector(config.model, test_cfg=config.get('test_cfg'))
    if checkpoint is not None:
        map_loc = 'cpu' if device == 'cpu' else None
        checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc)
        if 'CLASSES' in checkpoint.get('meta', {}):
            model.CLASSES = checkpoint['meta']['CLASSES']
        else:
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model